
Project Equalizer

Stefan Eilemann∗

http://www.equalizergraphics.com/

Equalizer is a project to develop software to simplify the creation of scalable graphics
applications and to improve the usability of multipipe visualization systems. The main
components of Equalizer are a resource server, which controls the visualization system’s
configuration, a client-side library for the development of scalable graphics software, a
transparent software layer to execute unmodified applications alongside with scalable
applications, as well as remote visualization capabilities. Equalizer is designed to sup-
port all kinds of visualization systems ranging from laptops, workstations, multipipe
shared memory systems to graphics clusters.

The purpose of Equalizer is to build a foundation for high performance visualization
by providing a common base for all kinds of applications used in multipipe environ-
ments, in particular for parallel graphics software.

The open development approach of Equalizer maximizes the benefits for hardware
vendors, software developers, research institutions and end users. Interested parties are
strongly encouraged to contact us. We are looking for contributions or founding for
several components of Equalizer.

Version Date Changes
0.3 January 4, 2007 update status wrt 0.2 release, some rewording
0.2 October 5, 2006 update status
0.1 July 5, 2006 initial draft

Latest version at http://www.equalizergraphics.com/documents/ProjectEqualizer.pdf

∗eilemann@gmail.com

http://www.equalizergraphics.com/
http://www.equalizergraphics.com/documents/ProjectEqualizer.pdf


1 Overview

As outlined in [1], there are three fundamentally different approaches to parallel ren-
dering. Transparent solutions offer an easy solution for applications which cannot or
need not to be modified, but are limited in performance and compatibility. Distributed
scene graphs offer better performance, but require the application to use a certain scene
graph and are therefore relatively invasive. The third approach, a parallel rendering
framework offers a minimally invasive approach for the development of parallel, scalable
graphics applications.

Today we have satisfying, though often proprietary, solutions for the transparent ap-
proach1. Distributed scene graphs are beginning to emerge2 as well. There is currently
no general programming framework to create parallel graphics applications. Further-
more, all existing solutions are ’islands’, that is, they are configured separately and
do possibly interfere with each other when running simultanously on the same system.
Equalizer addresses these issues.

Unlike the HPC community, visualization software developers do not widely address
performance bottlenecks by parallelizing their applications. One of the reasons for the
lack of parallel graphics applications is the lack of a standard programming interface,
which implements specific knowledge needed to create scalable visualization applica-
tions. Equalizer provides a programming framework for high performance visualization.

2 Project Description

Equalizer is a project to create new software to facilitate the development and usage
of software for multipipe graphics systems by addressing the shortcomings of the cur-
rent software situation. It adds the two missing components, a parallel programming
framework and a resource management system, and integrates existing solutions, such
as a transparent layer, scene graphs and remote visualization capabilities.

Equalizer addresses all visualization systems. An Equalizer application can run un-
modified on a laptop, a multipipe workstation, a graphics cluster or a multipipe shared
memory visualization server.

2.1 Development Model

The Equalizer development is conducted in an open way. It is licensed under the LGPL
open source license, allowing the creation of commercial and open source applications
using the framework, while ensuring a healthy community around the project. Con-
tributing parties, such as hardware vendors, software developers and end users, have
the following benefits from contributing to the project:

Lower Development Costs The common functionality of any multipipe application is
outsourced to the Equalizer framework, thus freeing the software developers to
reimplement basic algorithms. The expertise for high performance visualization
is partly embedded into Equalizer, and has not to be developed inhouse. The

1e.g., Chromium from Stanford University, VGP from ModViz, SVN from IBM
2e.g., OpenSG, ScaleViz from Mercury Computer Systems

1



open development approach ensures that Equalizer delivers the functionality most
needed by the community.

Higher Functionality Additional features, which would not be cost-effective to imple-
ment in the application, are provided by the Equalizer framework. New features
will become available over time, and will often be usable by the application with
no or minimal code changes.

Ease of Use The central resource management of Equalizer requires only a one-time
setup, thus minimizing the impact for end users. Once a visualization system is
set up, unmodified and scalable OpenGL applications can be run without any
modification. Simple configurations, especially shared memory systems, will be
configured automatically.

Reduced Development Risk The open source license of Equalizer is the guarantee for
software developers that the product will be available ’forever’. Critical features
or bugs, in the event that they are not addressed by the maintainers, can still be
addressed internally.

2.2 Programming Framework

The programming framework is the main contribution of the Equalizer project. It
addresses common problems when creating parallel graphics applications, and thus fa-
cilitates the development of scalable multipipe rendering software. Equalizer provides
functionality in the area of process creation and synchronization, rendering task dis-
tribution, data transport, as well as the composition of the rendering results. The
software developer plugs the application’s rendering code into the framework. The
Equalizer server deploys this rendering code according to the system’s configuration
and load. The programming framework is the client library to the Equalizer server, as
well as the header files for this library.

2.3 Resource Management System

The core of the resource management system is the Equalizer server, which is managing
the system’s configuration. It is configured to know the system resources and schedules
the execution of rendering tasks on these resources. Equalizer applications provide a
render client3, which contains the application’s rendering code. This render client is
instanciated on the render nodes by the Equalizer server. The transparent layer and
distributed scene graphs are technically an Equalizer application.

For standalone usage on simple machines, the Equalizer client library will be able
to automatically configure and use a builtin server, to facilitate the deployment on
workstations. Naturally, certain optimisations, such as the per system loadbalancing is
lost without the use of a dedicated server.

2.4 Integration

The following components will be based on existing open source software, which will
be integrated with Equalizer. This integration enables a seamless execution and end

3The render client can be the same executable as the application.

2



user experience. On one hand, by relying on the Equalizer server for configuration, an
visualization systems has only one set of configuration files, instead of disjunct config-
urations for each of the tools. On the other hand, the central resource management
improves the performance and interoperability between applications running on the
same system.

2.4.1 Transparent Layer

The transparent layer enables the execution of unmodified applications on the cluster.
Applications which do not run at the required performance can then be addressed
individually by porting them to directly use the Equalizer programming framework.
This transparent layer will most likely be built using the Chromium[3] framework. For
usability reasons, a virtualization solution for the 2D user interface, such as Xdmx X11
proxy server, will be integrated with the Equalizer core and the transparent layer.

2.4.2 Remote Visualization

Remote visualization provides the capability of executing the application on a power-
ful, central visualization system. The integration with Equalizer allows for seamless
integration of remote visualization, and enables optimisations due to the knowledge
gathered by the framework during rendering.

2.4.3 Scene Graphs

The integration with scene graphs enables existing applications using such a scene graph
to quickly be able to take advantadge of multipipe systems.

Two different approaches might be taken. In the first approach, each render node
holds a copy of the scene graph, and applies the changes made by the application.
In the second approach, the application sends high-level rendering commands to the
nodes, which together with a caching mechanism can provide excellent performance.

3 Milestones

Much of the development of Equalizer is driven by the actual need of the users, which
are at the moment the software developers. A current feature list can be found in [2].

Currently, the programming framework is usable for the development of commercial
multipipe applications by an experienced OpenGL programmer. Version 0.2 added
support for scalable rendering to show the benefits of scalable rendering on commodity
graphics clusters and shared memory systems.

For 2007, the main areas we plan to address are the extension of the resource server for
multi-application usage, general reliability and performance improvements, a Windows
port, as well as the integration of a transparent layer. The founding for this effort is
currently investigated. Interested parties are strongly encouraged to contact us with
proposals.

3



3.1 Programming Framework

The core part of the Equalizer project is the programming framework and resource
server. Naturally, these two components are the first major milestone. Currently,
they are usable to start the development of parallel graphics applications. Right now
Equalizer supports multipipe rendering for display walls and immersive virtual reality
installations, including stereo and head tracking, as well as a wide range of scalable
rendering features.

3.2 Transparent Layer

The transparent layer is an important component, since it lowers the barrier of us-
ing Equalizer and graphics clusters significantly. It will be the next milestone to be
addressed.

3.3 Integration

The integration of the other components will be driven by the actual demand.
Remote visualization is an easy target, since it requires only the integration of suitable

compression for the image transport. Everything else should be easily configurable using
the standard Equalizer capabilities.

The development of a distributed scene graph is relatively independent from the
Equalizer core development and might take the form of a seperate project.

References

[1] S. Eilemann. An Analysis of Parallel Rendering Systems, 2006.
http://www.equalizergraphics.com/documents/ParallelRenderingSystems.pdf

[2] S. Eilemann. Equalizer Feature List, 2007.
http://www.equalizergraphics.com/features.html

[3] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, and P. D. Kirchner. Chromium: A
stream-processing framework for interactive rendering on clusters. ACM Transactions on Graphics,
21(3):693–702, 2002.

4


	Overview
	Project Description
	Development Model
	Programming Framework
	Resource Management System
	Integration
	Transparent Layer
	Remote Visualization
	Scene Graphs


	Milestones
	Programming Framework
	Transparent Layer
	Integration


