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ABSTRACT

The amount of data acquired from a single simulation or an object scan is growing
continuously due to increased computational capabilities and advances in scan-
ning devices. This data has to be not only stored, but also displayed interactively
for visual analysis and real-time exploration. However, rendering and especially
communication hardware, progress at a much slower pace. Nowadays it is not
possible to use a single computer with a single GPU to visualize massive modern
datasets without avoiding time consuming preprocessing and significant visual
quality degradation. When multiple machines are used to accelerate visualiza-
tion, parallel rendering software has to be used to distribute tasks, synchronize
execution and assemble partially obtained images together. Although there were
many systems developed in the past, only a few are generic enough to be used by
modern rendering applications.

In this thesis, various aspects of parallel rendering tasks on a small PC cluster
were studied in detail. Polygonal, volume and terrain rendering applications are
used to demonstrate various techniques and optimizations throughout this work,
where Equalizer is chosen as a general-purpose parallel rendering framework,
providing flexible configuration and being relatively easy to port existing appli-
cations to. Several improvements to the original framework and algorithms are
presented.

First, general approaches to parallel visualization, image and data space ren-
dering decomposition, as well as popular distributed image compositing algo-
rithms are briefly explained.
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Next, deep analysis of Equalizer library’s performance is conducted in order to
reveal weak and strong aspects of the framework. The importance of the efficient
image compression methods is confirmed in this study, since the limited network
bandwidth is the most significant bottleneck during the image compositing stage.
Static data distribution is considered and several compression methods are inte-
grated and evaluated, where the best compression schemes for different rendering
scenarios are outlined; then, distributed rendering is compared to streaming ap-
proach, and an introductory study of automatic versus manual load-balancing for
the case of the distributed out-of-core terrain rendering application is presented.

Further, in order to overcome the compositing bottleneck, a Region Of Interest
(ROI) based method is proposed. Integrated on the level of GPU this approach
allows to quickly determine which screen regions are supposed to be read-back
to main memory, compressed and sent for compositing, before the actual data
read-back. Being extremely fast, it allows to accelerate image assembling stage
considerably. The algorithm can be applied to any rendering framework and any
rendering algorithm. The only assumption used in the proposed method is that,
with the increased number of resources, each resource would draw into a smaller
screen area in case of data-space rendering decomposition.

Finally, a generic data fetching and caching mechanism is introduced to Equal-
izer framework. While the framework already provides certain support for data
distribution and synchronization, the unified toolset for building out-of-core ap-
plications was missing, forcing application developers to invent or adapt their own
methods every time the framework was used. Based on the proposed data man-
agement strategy a distributed out-of-core volume rendering solution for large vol-
umes visualization is created, providing further insights into building of efficient
parallel rendering applications in general.
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1C H A P T E R

INTRODUCTION

1.1 Scientific Visualization and Data Growth

Increasing computational abilities of modern hardware, cluster computation and
advances in scanning technologies lead to an explosive growth of numerical data
that has to be stored, processed and visualized. Nowadays, researchers are dealing
with data of dozens of gigabytes per processing unit and soon terabytes will not
be something unusual. The variety of applications together with different use-
case scenarios and data representations bring further challenges to the field of
visualization.

Typical areas where large-scale scientific visualization is applied are engineer-
ing, medicine and natural sciences. A selection of use-case scenarios is shown in
Figure 1.1.

(a) (b) (c)

Figure 1.1: Various visualization scenarios: (a) immersive CAVE with polygonal data
rendering, (b) display wall featuring terrain visualization, and (c) scalable volume ren-
dering.
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2 1 INTRODUCTION

Data growth is in particular challenging since visualization devices, despite
the advances in GPU technologies, can’t keep up with it. Figure 1.2 illustrates
the data growth by means of polygon and voxel counts for single models; the
dependency is logarithmic.
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Figure 1.2: Various popular datasets for polygonal and volumetric data, plotted accord-
ing to their size and the year of acquisition.

In order to visualize these vast amounts of data researchers have built various
software and hardware solutions, nevertheless, there are fundamental problems
related to the number of rendering resources utilized. The most important bottle-
necks are limited network throughput and other communication overheads. The
larger the dataset, the more hardware resources it takes to process and visual-
ize it; the higher the number of hardware units being used, the more significant
communication overhead becomes. Table 1.1 demonstrates this effect clearly:
over the years the amount of volume data that the researchers were able to vi-
sualize increased, so did the resolution of the output image. However, when too
many resources are used, as showed by [Howison et al., 2010], visualization speed
dropped below interactive frame rates.

Year Data Size Resolution Speed Resources Reference
2001 2563 10242 px 4.3 fps 4 Nodes [Magallón et al., 2001]
2004 10243 10242 px 8.0 fps 16 Nodes [Houston, 2004]
2010 45603 46082 px 2.0 fps 216K Cores [Howison et al., 2010]

Table 1.1: Volume data growth, resources and performance for given setups.

It is to be mentioned that even a single machine can provide significant render-
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ing performance nowadays. Using various optimization techniques, it is possible
to visualize large amounts of data with a single GPU. The price is usually paid by
higher algorithmic complexity, time consuming preprocessing and lower image
quality. Parallel rendering is trying to improve image quality and reduce prepro-
cessing time by exploiting similar algorithms within individual computers and by
adding another set of task distribution and synchronization techniques.

1.2 Resources of Parallel Rendering Systems

Whenever it is desired to use multiple machines for visualization, there are a few
aspects to consider: how data is acquired, what the data size is, what infrastructure
is already available, what space and power consumption requirements are. These
would affect the choice of the visualization system setup.

Depending on the data type and the system resources, there are additional
questions to resolve: where the data is coming from, which resources are used for
rendering, how data is displayed, what the user interaction options are?

Finally, there are a few algorithmic aspects of any parallel rendering system to
take into account: how the data visualization is separated between resources, and
how the data distribution (if any) is being handled.

There are three main visualization system types to consider: PC clusters with
GPU-based rendering; Supercomputer-based CPU rendering; or Hybrid systems,
i.e. combining both, supercomputer and PC rendering cluster. Table 1.2 gives a
short comparison of these solutions.

PC clusters Supercomputers Hybrid

Hardware 2..30 PCs 100..300K CPUs
100..400K CPUs +

2..30 PCs
Price Affordable Expensive Expensive

Rendering type GPU CPU GPU
Power consumption Low High High
Memory resources Limited Vast amounts Vast amounts

”In Situ” visualization Hardly Supported Possible
Compositing overhead Tolerable Large Tolerable

Table 1.2: Various systems’ properties comparison.

PC clusters An affordable option for moderate data size processing and visu-
alization could be created by connecting off-the-shelf computers, so-called nodes,
into a small PC cluster. Typically consisting of up to a few dozens of computers,
it is easy to setup and maintain. Power consumption is usually not an issue ei-
ther. The GPUs are the primary resources for rendering, nevertheless, they could
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theoretically be used for other computation tasks as well. Data size is the main
limiting factor and the data typically has to be uploaded to such a cluster prior to
the visualization; Additionally, depending on the visualization task, the network
interconnection could be a significant bottleneck. Programmers have to take spe-
cial care about synchronization and data management between nodes, which is
usually achieved by running some sort of parallel rendering framework, that may
or may not require changes to original rendering code.

Supercomputer-based visualization Traditionally supercomputers were
used for data simulation. Since the data is already available in the memory it is
tempting to use the available computational power and fast CPU interconnection
for rendering as well; at the same time such a solution can benefit from additional
information about the data taken from the simulation (e.g., spatial relationships).
While a single CPU is not very efficient for rendering comparing to GPU, the
number of available CPUs are usually so high that it is possible to assign multiple
CPUs per pixel, which, in turn, would be much more efficient.

Some of the mosts recent supercomputers are already being equipped with
GPU-based NVIDIA Tesla cards for number crunching; these solutions are sup-
posed to have a great rendering potential compared to other types of visualization
systems.

The issues with supercomputer-based approaches are certainly the price of
installation and the maintenance costs (upgrades are usually not cheap if at all
possible), power consumption, cooling and space requirements. Regarding the
rendering within a supercomputer, the problem lies in assembling of the rendered
data from the individual processors. If hundreds of CPUs were used to render
one single pixel, despite the fast inter-CPU communication, the resulting effort to
combine the final color for this pixel from this large number of sources is cum-
bersome. Recent study by [Howison et al., 2010] showed that interactivity is still
not achievable for such scenarios. The high number of messages being created in
the system, while trying to communicate all the required information for the final
image acquisition, still remains an unsolved issue.

Hybrid visualization system Creating a hybrid system by extending an
existing supercomputer with a few rendering nodes for visualization is a common
approach. It allows keeping simulation system almost intact, while having a clear
separation of tasks. The data that has to be visualized can be streamed directly
from the supercomputer, thus reducing storage requirements, and allowing inter-
active rendering as the data is being simulated. The power consumption, space
and cooling requirements are inherited from the supercomputer setup, while fast
GPU rendering is one of the benefits.
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Hybrid systems are built on top of existing large-scale PC cluster installation.
A large-scale PC cluster is used in the same role as a supercomputer, providing
CPU computational resources and owning a fast network interconnection, while
few additional nodes with GPUs are added and used for visualization. This type
of setup was demonstrated by [Suss et al., 2010], where a large cluster was used
as a data source as well as for initial culling optimizations, improving the overall
rendering performance.

In this work, the focus is largely on distributed rendering with GPU-based PC
clusters. This choice makes it possible to achieve interactive visualization of rea-
sonably large datasets at low setup and maintenance costs. Consequently, PC
clusters are the most popular type of visualization setups nowadays.

1.3 Challenges of Parallel Rendering

Parallel rendering can be applied in various areas, where additional performance
should be gained by exploiting rendering parallelism on a scale larger than a single
GPU can provide. Changing of existing applications to run on multiple GPUs and
multiple machines has to be made easy. In order to make transition faster, general-
purpose parallel rendering libraries should be considered, rather than writing par-
allel implementations from the ground up. Through this approach, the implemen-
tation details would be addressed by the framework developers, while application
programmers could focus on domain specific problems.

From the generic parallel rendering framework’s point of view, there are vari-
ous issues that have to be addressed:

• Image data compression
When multiple computers contribute to the final rendering, partial image re-
sults have to be sent between machines. These partial results are combined
(composited) together in order to produce complete visualization. The com-
positing stage is the most time consuming task, which is performed by the
rendering framework itself. Compositing strategy influences the amount
of data exchange between nodes, where efficient image data compression
comes into play.

There are two main criteria that image compression has to satisfy: com-
pression and decompression methods have to be fast enough such that the
overall performance is improved, and the amount of introduced artifacts has
to be as low as possible (which conflicts with high compression rates).

Different parts of the framework and the application can affect each other’s
performance; therefore, it is not possible to evaluate compression sepa-
rately. Properties of compression methods have to be carefully studied
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within the fully functioning rendering framework, using different rendering
algorithms and different distribution scenarios, since acceleration of only
compression part doesn’t necessary lead to overall improvement. For exam-
ple, improving image data compression by making it run on multiple cores
with OpenMP does increase compression speed significantly if applied in
a stand-alone compression application, however the overall performance of
rendering is not improved, because the framework itself, as well as the ren-
dering algorithms, run multiple threads already, and typically there are not
enough free cores to execute compression in parallel on CPU.

It is necessary to evaluate particular compression algorithms in different
rendering scenarios, since different decomposition modes and different ap-
plications fill the screen differently, therefore faster but simpler methods can
be beneficial in some cases, but fail to improve the overall performance in
other.

Depending on the distribution scheme, the amount of compression artifacts
can be tolerated differently. On the other hand, if the final values of pix-
els are combined from different sources (sort-last rendering decomposition)
very little amount of compression error can be allowed since it would pos-
sibly introduce even more noticeable artifacts after compositing. On the
other hand, when each renderer is responsible for its own screen region
(sort-first decomposition), lossy compression with higher compression ra-
tios and more artifacts is allowed. This is in particular true for scenes with
strong motion, where strong movement masks compression artifacts.

• Compositing optimization
The amount of information that is exchanged between two particular nodes
can vary significantly depending on the assembling strategy. This is mostly
related to sort-last rendering decomposition, where different parts of the
same dataset are rendered on different computers. The partial images that
potentially occupy the entire screen have to be assembled together. In gen-
eral, methods like direct send [Eilemann and Pajarola, 2007] provide dis-
tributed compositing with constant per-node cost, only increasing number
of passed messages, rather than increasing compositing cost linearly in case
when all partial images would be sent to a single computer; however even
in these methods compositing performance hits network throughput limits
quickly.

Special rendering and compositing techniques for particular rendering types
were proposed in the past [Stompel et al., 2003; Samanta et al., 2000]. Due
to requirement of tight integration of specific applications and frameworks,
they can’t easily be generalized into application independent frameworks.
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In case of a generic parallel rendering framework, creating a compositing
optimization, that does not require coupling with a particular renderer, is an
important task to solve.

• Load balancing
Parallel rendering in a scalable scenario (many to one rendering) requires
balancing of load per rendering resource. In general, dividing of initial data
equally between renderers doesn’t achieve equal rendering time. Depend-
ing on the camera position and orientation some portions of the data will
contain more useful information since they are, for example, closer to the
screen plane and therefore slower to render, other parts could be in the back-
ground or simply outside of the view frustum, thus data separation between
rendering resources has to be adjusted dynamically.

Although different approaches for load balancing (LB) exist [Samanta et al.,
1999; Marchesin et al., 2006; Hui et al., 2009; Osman and Ammar, 2002],
providing efficient LB strategies for a generic application is still a largely
unsolved issue. The coupling between the framework and the application
has to be minimal in order to keep code reusable, while balancing should
still be able to automatically equalize load well. This is especially diffi-
cult in case of out-of-core rendering applications, since the framework has
no knowledge about asynchronous data fetching and caching methods ex-
ploited during rendering.

• Application developer support
The parallel rendering framework has to be easy to use, while providing
enough flexibility when necessary. Various building blocks for creating
GUIs and data management as well as hardware abstractions are necessary.
While there are several rendering frameworks available [Humphreys et al.,
2002; Eilemann et al., 2009; Doerr and Kuester, 2011], none provides com-
plete support in terms of efficient data management and load balancing for
an arbitrary application. The application developers are forced to imple-
ment and adopt data distribution and management strategies every time a
new application is created or ported. A significant effort from framework
developers therefore should be invested in order to provide a convenient set
of standard tools for integration or implementing of new types of parallel
applications easier.

1.4 Contributions

In this thesis, various issues of parallel rendering frameworks and applications,
outlined above, are addressed. The focus is mainly on the efficiency of the render-
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ing framework and compositing stage, as well as on providing solutions for sim-
plified creation of parallel out-of-core rendering applications within the Equalizer
framework by [Eilemann et al., 2009].

The performance issues of the framework are addressed first, using sample
applications for polygonal and volume rendering in a variety of rendering sce-
narios. New compositing optimizations and compression selection guidelines are
provided as a result. Next, an existing out-of-core terrain rendering application
is adapted to the Equalizer, extending its use-case options and boosting the per-
formance using multiple computers. Load-balancing and data distribution options
are then investigated in this context, and scalable solutions are proposed. Lastly,
the data management system, based on a two level cache is introduced to Equal-
izer in order to simplify data handling for multi-GPU, multi-computer out-of-core
parallel rendering applications. Details of one such application for rendering of
large volumetric data, using proposed data management system, are also exposed.

Overall, the conducted evaluations in typical use case scenarios of a small
GPU-based visualization cluster and different applications, provide various in-
sights into creation of efficient parallel rendering applications; a more detailed
summary is outlined below:

• Cluster-based parallel rendering performance evaluation
With an extensive set of tests, a baseline for cluster parallel rendering per-
formance is set. An affordable GPU-based PC cluster, built out of widely
used components, is evaluated. The variety of applications covers the most
important areas of visualization, and the presented results provide an up-to-
date performance benchmark for such a typical installation. This study can
be used, for example, to estimate the potential performance benefits of port-
ing of a particular rendering application to run in a parallel environment, in
order to understand beforehand if it is feasible at all and what exactly can
be achieved in the best or worst case scenarios.

• Image data compression
The performance of the parallel rendering framework itself largely depends
on the compositing stage and essentially on the compression used during
image transmission. In the following several image compression schemes
are discussed and evaluated within the fully functioning rendering setup.
RLE-based as well as YUV image compression methods are integrated into
the framework in order to support sort-first and sort-last compositing, where
YUV is implemented on GPU for better performance. Since performance
of a particular compression method is strongly dependent on the rendering
outcome, these methods are then studied in different rendering scenarios.
and practical guidelines for their usage are concluded.
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• Compositing optimization

A new compositing performance optimization algorithm based on regions
of interest for sort-last rendering is introduced. The method is indepen-
dent of the rendering algorithm and the framework and exploits very ba-
sic assumptions about the rendering result. The main idea is to optimize
the ”read-back, compression, transmission” part of the compositing by an-
alyzing the frame buffer before the data is read from GPU to RAM. The
algorithm then identifies changed frame buffer areas and splits initial GPU
to RAM read-back requests into a series of smaller read-backs excluding
empty regions. This method provides significant speedup for sort-last de-
composition mode, comparing to other compression techniques, since in
the best case it is able to reduce the RAM footprint significantly. The only
assumption that is used by the proposed method is that with the increased
numbed of renderers the amount of changed screen pixels usually decreases.

• Out-of-core application parallelization

The terrain rendering application (RASTeR) was ported to Equalizer (eqRA-
STeR) in order to extend its functionality to multiple displays and scalable,
many to one, rendering. RASTeR is a typical out-of-core rendering solution,
which has its own data management layer; this had to be taken into account,
as out of the box solutions for load balancing, provided by Equalizer, were
failing in scalable setups. Various aspects of the out-of-core application
were therefore studied and improved, new approaches for load balancing
and data distribution are proposed in the context of eqRASTeR. Obtained
results and methods can be directly translated and applied to various out-of-
core applications especially for the sort-last rendering scenarios.

• Data management and application development

In order to bridge the gap between applications’ and rendering frameworks’
developers a parallel out-of-core data management system is introduced to
Equalizer. Since it is mapped to the class hierarchy provided by Equalizer,
the seamless integration of out-of-core applications, supporting multiple
GPUs, is now made easier, which is demonstrated by the volume render-
ing application for large data sets, that illustrates most of the data manage-
ment functionality. The management system basically provides a two level
cache, where data can be asynchronously uploaded to the RAM by multiple
threads, and then can be accessed by multiple GPU threads, which asyn-
chronously load data from RAM to GPUs memory. Custom applications
can extend the framework to different types of data and rendering tech-
niques, keeping core asynchronous behavior intact.
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1.5 Dissertation Overview

In the following, a short overview on the contents of the next chapters is given.
In Chapter 2, the basics of scalable interactive visualization are briefly de-

scribed. The first part explains methods like data compression, frustum/object
culling, level of detail, out-of-core rendering etc. that are applied not only in a
parallel rendering setup, but also within a single rendering unit. The second part
of Chapter 2 gives an overview on parallel rendering systems and presents the
motivation behind the choice of the Equalizer framework, explaining further the
structure of parallel visualization systems in general.

Chapter 3 is about parallel image compositing and image data compression,
which are the most essential parts of the parallel visualization framework. Sort-
first, sort-middle and sort-last rendering decompositions are described; composit-
ing in case of polygonal and volume rendering is introduced, as well as few paral-
lel image compositing algorithms are explained. Since several compression meth-
ods will be evaluated later, they are also presented in Chapter 3.

Once the basics are covered, the performance of the Equalizer framework is
evaluated in Chapter 4, where a polygonal rendering application with static data
distribution is used. Static data distribution helps to separate application’s and
the framework’s performances better. Different compression methods are evalu-
ated within the fully functioning parallel visualization system on a 10-node clus-
ter. Additionally, the performance between distributed (Equalizer) and streaming
(Chromium) systems is compared; also the performance of an out-of-core ter-
rain rendering application, ported to Equalizer, is demonstrated, as well as two
approaches of automatic and static load balancing are discussed.

The compositing optimization algorithm is then presented and evaluated in
Chapter 5, in a similar setup as used in Chapter 4. A detailed study of several
rendering scenarios using this algorithm is provided as well.

Chapter 6 describes the data management system that was developed in order
to support application developers. This system, coupled with Equalizer, makes
creating of parallel out-of-core rendering applications easier. A description of
such a visualization application for rendering of large volume data is also pre-
sented in Chapter 6, revealing further insights into building a parallel rendering
applications with the Equalizer framework.

Chapter 7 concludes this thesis with a summary and gives directions for future
work.



2C H A P T E R

SCALABLE INTERACTIVE
VISUALIZATION

2.1 Generic Rendering Approaches

Interactive data visualization is important in many fields. It is vital to perform
visualization in real-time or at interactive frame rates for efficient data analysis.
While the performance of GPUs grow fast it is not able to keep up with the data
grow. Throughput, storage as well as RAM and VRAM size limitations promoted
development of various data reduction techniques to enable large-scale visualiza-
tion on a single machine. Methods like data compression, frustum/object culling,
Level Of Detail (LOD), multi-resolution, out-of-core and variable viewport ren-
dering greatly improve performance, but there are still limits to their use.

Data compression The very first issue of large data is to deliver it to RAM
and VRAM from computer’s hard disk drive (HDD) or remote network storage.
Since this initial access is the slowest link of a chain, the evident solution is to
store data in compressed form. Less data then has to be read from a slow device
while some computational power is used to decompress it every time the data is
being fetched. On the other hand, compression of the data prior to visualization is
an inevitable preprocessing overhead that often can be ignored since it has to be
done only once.

Data compression is an art of its own; particular method greatly depends on

11
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the information’s characteristics and available resources. It can be a general com-
pression method suitable for any type of information (like LZO1 library), some
area specific algorithm that explores properties of a certain data type coheren-
cies (i.e. wavelet transform [Fout and Ma, 2007], discrete cosine transform [Yeo
and Liu, 1995] (DCT), Fourier transform [Chiueh et al., 1997], tensor [Kolda
and Bader, 2009] or vector quantization-based [Schneider and Westermann, 2003]
compression of volumetric data, or various mesh compression schemes [Courbet
and Hudelot, 2009; Gobbetti et al., 2006] for polygonal data) or combination of
both.

Frustum/object culling Exploring of a large data typically includes not
only observing the entire data at all times, but also taking a closer looks at small
portions of it, studying different pieces of the information in detail, therefore it is
important to limit the amount of data being loaded and displayed. For example, in
geo-visualization (or terrain rendering) the particular area of interest is a city or a
street rather than the whole earth itself, thus it is vital to load and display only a
small visible or interesting portion of, probably, enormous dataset.

There are three types of methods used in practice to determine visible set of
primitives: view-frustum, back-face and occlusion culling. View-frustum culling
excludes information not visible to the virtual camera due to camera’s own setup
(in computer graphics visible area is typically represented as a frustum of a rectan-
gular pyramid and consists of six clipping planes). Every portion of information
is tested separately for visibility only against the frustum itself. Back-face culling
is responsible for discarding surfaces of opaque objects that are facing away from
the camera. Finally, occlusion culling is used to omit objects, which are occluded
by other objects, it could be done in different ways [Klosowski and Silva, 2000;
Koltun et al., 2000], while the occlusion queries [Bittner et al., 2004] is the most
popular method, since it has hardware support in modern GPUs. Visual represen-
tation of different visibility culling methods is given on Figure 2.1.

Level Of Detail and multi-resolution rendering When dealing with
perspective projection, further away objects appear smaller on the screen, this
means they don’t require the same level of refinement as objects closer to the
camera, since these details will not be visible and thus it would be a waste of
space and rendering resources. Having multiple representations of the same ob-
ject with different level of detail and selecting proper version depending on the
occupied screen-space is a good way to improve visualization performance, and
reduce memory footprint. The major problem with discrete LOD techniques is
in seamless switching between levels. If not done carefully switching between

1http://www.oberhumer.com/opensource/lzo/



2.1 Generic Rendering Approaches 13

View-frustum culling

Back-face
culling

Occlusion
cullingView-frustum culling Far 

Plane

Near 
Plane

1

2

3

4

5
6

7

8

Figure 2.1: Different culling types: objects 1, 2, 3, 8 are discarded by view-frustum
culling since they fall out of view-frustum defined by near, far, and four side clipping
planes; facing away from the camera surfaces of opaque objects 4 and 5 are rejected by
back-face culling; objects 6 and 7 are completely obscured from the camera point of view
by objects 4 and 5, thus they are ignored due to occlusion culling.

discrete levels produces visible ”popping” effects; depending on the application
these effects could be tolerated or will be considered as artifacts.

Some compression methods allow automatic discrete LOD exploration. With
these methods data can be gradually decompressed until desired precision is reached
(typical examples are wavelets [Fout and Ma, 2007], or DCT [Yeo and Liu, 1995]
compression methods). Continues LOD methods [Hoppe, 1997; Strugar, 2009]
can be applied in some scenarios, where seamless LOD change is possible even
within one model of the scene.

Deriving from the LOD techniques, multi-resolution rendering is used to bal-
ance quality-performance ration by selecting lower resolution data representation
whenever performance is more important than quality.

Out-of-core rendering Short reaction time and sufficient frame rate are
important aspects of any interactive visualization. Out-of-core is referred to ren-
dering of the data that doesn’t fit to the main memory entirely, thus exploring data
usually requires frequent loading of new portions to RAM and VRAM, delays are
eventually introduced if this process is interleaved with actual rendering, exposing
lower frame rates and negative user experience. Out-of-core rendering is usually
combined with special data management strategies to hide this latency by load-
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ing requested data in parallel with rendering of already available representation,
possibly of lower quality. Lower quality representation occupies less space, thus
faster to load and visualize; it gives the user a general idea of what is going to
be seen next and allows some level of data exploration, while higher resolution
version is being prepared in the background.

Variable viewport size If rasterization is the limiting factor of interactive
visualization, another approach to improve performance is to reduce rendered res-
olution of the screen itself. The lower resolution image is created in the invisible
buffer and then upscaled to fill desired screen space. Final image will look blurry
on the screen as a result of such quality-performance trade-off.

All the aforementioned methods are tightly coupled in a modern visualization
system, supporting and completing one another. Clever data compression can
provide LOD, while LOD is a building block for out-of-core visualization, multi-
resolution rendering and data management; variable viewport size has direct influ-
ence on what LOD data is selected, where frustum/object culling can be generally
applied to any rendering method.

Despite all the effort to perform visualization interactively on a single machine
there are two major cases when it doesn’t suffice: first, large multi-megapixel dis-
plays, display arrays, or virtual environments, where single GPU hits the raster-
ization limit, or physically not capable to support that large number of displays;
and second, too large data to pre-process on a single machine in appropriate time
(this includes scenarios where large amounts of data has to be visualized without
preprocessing in order to, for example, steer ongoing simulation process).

Apparent solution is to use a system consisting of multiple GPUs and multiple
computers to split visualization task. Desired features of such setups are: scala-
bility, simplicity of configuration, easy to port of existing applications, as well as
moderate cost of building and maintaining.

2.2 Parallel Rendering Systems

The early fundamental concepts of parallel rendering have been laid down in
[Molnar et al., 1994] and [Crockett, 1997]. A number of domain specific parallel
rendering algorithms and special-purpose hardware solutions have been proposed
in the past, however, only few generic parallel rendering frameworks have been
developed.
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2.2.1 Domain Specific Solutions

Cluster-based parallel rendering has been commercialized for off-line rendering
(i.e. distributed ray tracing) for computer generated animated movies or special
effects, since the ray tracing technique is inherently amenable to parallelization for
off-line processing. Other special-purpose solutions exist for parallel rendering in
specific application domains such as volume rendering [Li et al., 1997; Witten-
brink, 1998; Garcia and Shen, 2002; Nie et al., 2005] or geo-visualization [Vezina
and Robertson, 1991; Li et al., 1996; Johnson et al., 2006]. However, such specific
solutions are typically not applicable as a generic parallel rendering paradigm and
do not translate to arbitrary scientific visualization and distributed graphics prob-
lems.

Recently in [Niski and Cohen, 2007], parallel rendering of hierarchical level
of detail (LOD) data has been addressed and a solution specific to sort-first tile-
based parallel rendering has been presented. While the presented approach is not
a generic parallel rendering system, basic concepts, such as load management
and adaptive LOD data traversal, can be carried over to other sort-first parallel
rendering solutions.

2.2.2 Special-Purpose Architectures

Traditionally, high-performance real-time rendering systems have relied on inte-
grated proprietary system architecture, such as the SGI graphics super computers.
These special-purpose solutions have become a niche product as their graphics
performance does not keep up with off-the-shelf workstation graphics hardware
and scalability of clusters. However, cluster systems need more sophisticated par-
allel graphics rendering libraries.

Due to its conceptual simplicity, a number of special-purpose image com-
positing hardware solutions for sort-last parallel rendering have been developed.
The proposed hardware architectures include Sepia [Moll et al., 1999], Sepia 2
[Lombeyda et al., 2001], Lightning 2 [Stoll et al., 2001], Metabuffer [Blanke
et al., 2000; Zhang et al., 2001], MPC Compositor [Muraki et al., 2001] and Pix-
elFlow [Molnar et al., 1992; Eyles et al., 1997], of which only a few have reached
the commercial product stage (i.e. Sepia 2 and MPC Compositor). However, the
inherent inflexibility and setup overhead have limited their distribution and ap-
plication support. Moreover, with the recent advances in the speed of CPU-GPU
interfaces, such as PCI Express and other modern interconnects, combinations
of software and GPU-based solutions offer more flexibility at comparable perfor-
mance.
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2.2.3 Generic Systems

A number of algorithms and systems for parallel rendering have been developed
in the past. On one hand, some general concepts applicable to cluster parallel
rendering have been presented in [Mueller, 1995; Mueller, 1997] (sort-first archi-
tecture), [Samanta et al., 1999; Samanta et al., 2000] (load balancing), [Samanta
et al., 2001] (data replication), or [Cavin et al., 2005; Cavin and Mion, 2006]
(scalability). On the other hand, specific algorithms have been developed for clus-
ter based rendering and compositing such as [Ahrens and Painter, 1998], [Cor-
rea et al., 2002] and [Yang et al., 2001; Stompel et al., 2003]. However, these
approaches do not constitute APIs and libraries that can readily be integrated
into existing visualization applications, although the issue of the design of a par-
allel graphics interface has been addressed in [Igehy et al., 1998]. Only few
generic APIs and (cluster-) parallel rendering systems exist which include VR Jug-
gler [Bierbaum et al., 2001] (and its derivatives), Chromium [Humphreys et al.,
2002] (an evolution of [Humphreys and Hanrahan, 1999; Humphreys et al., 2000;
Humphreys et al., 2001]), Multipipe SDK [Bhaniramka et al., 2005; Jones et al.,
2004] and Equalizer [Eilemann et al., 2009].

OpenGL Multipipe SDK OpenGL Multipipe SDK (MPK) [Bhaniramka et al.,
2005] implements an effective parallel rendering API for a shared memory multi-
CPU/GPU system. It is similar to IRIS Performer [Rohlf and Helman, 1994] in
that it handles multi-pipe rendering by a lean abstraction layer via a conceptual
callback mechanism, and that it runs different application tasks in parallel. How-
ever, MPK is not designed nor meant for rendering nodes separated by a network.
MPK focuses on providing a parallel rendering framework for a single applica-
tion, parts of which are run in parallel on multiple rendering channels, such as the
culling, rendering and final image compositing processes.

VR Juggler VR Juggler [Just et al., 1998; Bierbaum et al., 2001] is a graphics
framework for virtual reality applications, which shields the application developer
from the underlying hardware architecture, devices and operating system. Its main
aim is to make virtual reality configurations easy to set up and use without the need
to know details about the devices and hardware configuration, but not specifically
to provide scalable parallel rendering. Extensions of VR Juggler, such as for
example ClusterJuggler [Bierbaum and Cruz-Neira, 2003] and NetJuggler [Allard
et al., 2002], are typically based on the replication of application and data on each
cluster node and basically take care of synchronization issues, but fail to provide
a flexible and powerful configuration mechanism that efficiently supports scalable
rendering as also noted in [Staadt et al., 2003].
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Chromium While Chromium [Humphreys et al., 2002] provides a powerful
and transparent abstraction of the OpenGL API, that allows a flexible configura-
tion of display resources, its main limitation with respect to scalable rendering is
that it is focused on streaming OpenGL commands through a network of nodes,
often initiated from a single source. This has also been observed in [Staadt et al.,
2003]. The problem comes in when the OpenGL stream is large in size, due to not
only containing OpenGL calls but also the rendered data such as geometry and
image data. Only if the geometry and textures are mostly static and can be kept in
GPU memory on the graphics card, no significant bottleneck can be expected as
then the OpenGL stream is composed of a relatively small number of rendering
instructions. However, as it is typical in real-world visualization applications, dis-
play and object settings are interactively manipulated, data and parameters may
change dynamically, and large data sets do not fit statically in GPU memory but
are often dynamically loaded from out-of-core and/or multiresolution data struc-
tures. This can lead to frequent updates not only of commands and parameters
which have to be distributed but also of the rendered data itself (geometry and
texture), thus causing the OpenGL stream to expand dramatically. Furthermore,
this stream of function calls and data must be packaged and broadcast in real-time
over the network to multiple nodes for each rendered frame. This makes CPU
performance and network bandwidth a more likely limiting factor.
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Figure 2.2: A traditional OpenGL application (b) and its equivalents when using CGLX
or Equalizer (a) and Chromium (c).
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The performance experiments in [Humphreys et al., 2002] indicate that Chromium
is working quite well when the rendering problem is fill-rate limited. This is due
to the fact that the OpenGL commands and a non-critical amount of rendering
data can be distributed to multiple nodes without significant problems and since
the critical fill-rate work is then performed locally on the graphics hardware.

Chromium also provides some facilities for parallel application development,
namely a sort-last, Binary-Swap compositing SPU and an OpenGL extension pro-
viding synchronization primitives, such as a barrier and semaphore. It leaves other
problems, such as configuration, task decomposition as well as process and thread
management unaddressed. Parallel Chromium applications tend to be written for
one specific parallel rendering use case, such as for example the sort-first dis-
tributed memory volume renderer [Bethel et al., 2003] or the sort-last parallel
volume renderer Raptor 2.

CGLX This framework [Doerr and Kuester, 2011] is designed to run appli-
cations on display walls. It is trying to overcome performance limitations of
Chromium by executing rendering tasks in a distributed way. Each node, that
has displays connected to it, is running separate application to render images lo-
cally, avoiding transmitting of OpenGL stream of image data over the network.
For example, one can setup a multi-screen display-wall with Chromium, stream-
ing the OpenGL calls to a number of render nodes assigned to screen tiles of the
display-wall, as illustrated in Figure 2.2(c), where only single instance of the ap-
plication is running. In contrast, CGLX runs parts of the application in parallel on
multiple rendering channels as illustrated in Figure 2.2(a). Only frustum, trans-
formation matrixes and user interaction are communicated over the network for
synchronous rendering.

The framework explores master-slave paradigm, where all events are sent to a
master node, which then emits correct commands for renderers. A separate dae-
mon process has to be running on each machine that is responsible for handling
connections, rendering application startup and on the fly reconfiguration. It is pos-
sible to run multiple applications in parallel using different displays and different
ports for communication.

Compared to Chromium the reported performance is much higher in geometry
heavy scenarios, as a downside, applications have to be ported to the framework,
where Chromium is able to run unmodified binaries. The porting effort, however,
is minimal, since CGLX doesn’t handle any compositing operations or sort-last
rendering. CGLX package additionally provides convenient visual tools for set-
ting up a large display wall, which also includes simulation mode for easier testing
on a single machine.

2http://graphics.stanford.edu/projects/raptor/
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Equalizer Parallel Rendering Framework A major strength of Equal-
izer is its flexible and scalable configuration of the parallel rendering tasks, which
takes the notion of a compound tree introduced in MPK [Bhaniramka et al., 2005]
to a distributed cluster environment. Hence different parallel rendering task de-
composition and image compositing configurations can easily be specified. For
example, efficient Direct Send sort-last image compositing has been demonstrated
in [Eilemann and Pajarola, 2007].

One of the essential differences of Equalizer to Chromium is that it is fully dis-
tributed and runs the application code in parallel. While preserving a minimally
invasive API, Equalizer system is better aimed at scalability as the actual data ac-
cess is decentralized in the distributed rendering clients. Equalizer provides very
flexible task decomposition configuration, and while Chromium’s infrastructure is
primarily the compositing stage, applications written once for Equalizer can eas-
ily be run in any different task decomposition mode and for any physical display
configuration without any changes to the application itself.

Equalizer takes care of distributed execution, synchronization and final image
compositing, while the application programmer identifies and encapsulates critical
parts of the application, such as culling and rendering. This approach is considered
to be minimally invasive since the existing and proprietary rendering code can
basically be retained. All rendering is executed directly to an OpenGL context,
and at no point are OpenGL commands sent over the network.

This minimally invasive approach allows the application to retain its OpenGL
rendering code, but structures the implementation to allow for optimal perfor-
mance. The network bandwidth is freed from unnecessary transmission of exces-
sive graphics commands and data since only the basic rendering parameters are
exchanged between nodes. Only for the unavoidable final image compositing step
in scalable rendering, frame buffer data between the nodes must be exchanged.
The application can implement efficient dynamic database updates based on dis-
tributed objects or message passing as these distributed systems primitives are
provided by Equalizer.

The Equalizer framework does not impose any constraints on how the appli-
cation handles and accesses the data to be visualized. As such, Equalizer does
not provide a solution to the parallel data access and distribution problem, which
has to be addressed by the application itself, as it is an orthogonal issue. It does
address some fundamental problems to help application developers to distribute
their data effectively in the context of parallel rendering. The Equalizer network-
ing layer supports message passing and the creation of distributed objects. By
sub-classing a distributed object class, static and versioned objects can be cre-
ated. Objects are addressed on the cluster using a unique identifier, which allows
the remote mapping of the object. Versioned objects are typically used for frame-
specific data, where a new version for each new frame is created. Equalizer passes
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this version information correctly to the application’s rendering code. This mech-
anism allows simple distribution and multi-buffering of data.

Compared to MPK, Equalizer supports fully distributed parallel rendering
paradigm and features more flexible task decomposition approach. CGLX sys-
tem was build with similar principles to Equalizer, while specializing on display
wall configuration and having no support for other use-case scenarios. It is dif-
ferent from VR Juggler in that it fully supports scalable parallel rendering such
as sort-first and sort-last task decomposition and image compositing, it provides
more flexible node configurations which for example allow specifying arbitrary
task decomposition and image compositing combinations as simple compound
layouts. Furthermore, it is fully distributed which includes support for network
swap barriers (synchronization), distributed objects as well as image compression
and transmission, also it supports multiple rendering threads per process, which is
important for multi-GPU systems.

Due to advantages described above, Equalizer was chosen as a main tool of
this thesis for detailed investigation and further enhancements of parallel render-
ing applications.

2.3 Structure of Parallel Visualization System

A general scheme of a distributed rendering system is presented on Figure 2.3.
The essential components are: Data source, Rendering nodes, Visualization nodes,
and a Server node. It is important to note that any of the components can be com-
bined in a single device within a particular rendering system; that is, for example,
the whole system can be represented by a single PC with multiple GPU cards.

Data source Prior to visualization, data has to be simulated or acquired by
other means (e.g., scanning). The Data source in the Figure 2.3 is therefore related
to a file, database, Network Attached Storage (NAS), supercomputer, PC cluster
or any other device that can store or produce data for visualization.

The data flow from/to the Data source and from/to Rendering nodes means
that rendering nodes themselves can produce some data (for example acceleration
structures for more efficient rendering) or they can exchange portion of the data
between each other without involving the original Data source (due to caching or
internal data management strategy it could be more efficient to transfer already
available portions of data from one rendering node to another directly, rather then
loading this data from the original source as shown by [Castanie et al., 2006]).

Rendering nodes The data has to be rendered first in order to be visual-
ized. In general, the rendering device doesn’t have to be able to actually display
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Figure 2.3: A general scheme of a distributed parallel visualization system. Various
components are presented as pictograms; the data flow and type is illustrated with lines;
finally, data flow directions are marked with arrows.

anything. In case of CPU-based rendering on a supercomputer there might be no
displays connected to the rendering system at all, it would be forced to use another
device to display produced images, or save them to a storage device, from where
they would be read by Visualization nodes.

Often, Rendering nodes have to exchange Image data between each other to
obtain final pixel values, this happens when multiple machines are rendering the
same pixels in parallel (this stage is called Compositing and is explained in detail
later in the Section 3.1), hence the bidirectional arrows to/from the Rendering
nodes on the Image data flow.

As it was explained earlier the Rendering node is combined with the data
source if it produces its own data to render (CPU-based rendering on a supercom-
puter), or when the data is initially copied to the rendering nodes itself (e.g., when
distributed file system is used on a rendering cluster to store the data on the same
devices, or the data is manually pre-divided between nodes).

Visualization nodes A computer that has connection to a display is called
Visualization node in Figure 2.3. Generally, such device would be used to display
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obtained images and is not producing any renderings itself (remote visualization
is one example, where low cost PC is used to display images that are produced by
a remote rendering service), therefore the Image data flow has only an incoming
direction.

The Visualization node itself is a device for user interaction in the presented
drawings. It is used to send user input commands back to the system to steer
visualization. There could be a separate device for capturing user input, but such
case is omitted here for simplicity.

In a common setup some of the Rendering nodes are combined with the Vi-
sualization node, such installation is most often used with local rendering on PC
clusters. In this case displays are directly connected to some of the rendering
machines, therefore the rendering and visualization roles are combined. The ad-
vantage is in the reduced Image data overhead, since the Image data doesn’t have
to be sent elsewhere for final displaying.

Server node In order to schedule visualization tasks and synchronize ren-
dering a centralized Server node is often used. In order to schedule visualization
process, user input, received from a Visualization node, is considered, addition-
ally, the information such as rendering timings and loaded data state is collected
from the Rendering nodes. Based on the available input Server node is deciding
for every frame what exactly is going to be rendered and what Image data is go-
ing to be exchanged. Server node can be as well responsible for starting, initial
configuration and shut down of a visualization system. In a typical setup it is of-
ten combined with one of the Rendering nodes, being represented by a separate
process.



3C H A P T E R

IMAGE COMPOSITING AND
IMAGE DATA COMPRESSION

3.1 Primitives Sorting Strategies

Rendering on a modern hardware could be roughly divided into two stages: geom-
etry processing (transformation, clipping, lighting, etc.), and rasterization (scan-
conversion, shading and visibility determination). In the Fully Parallel scenario
(Figure 3.1 (a)) all geometry is processed in parallel, followed by processing of
fragments in parallel. Geometry processing is parallelized through assigning sub-
sets of primitives to different processors, while during rasterization step assign-
ment is done through separation of various pixel groups. Essentially, the result
of rendering is a combined effect of all primitives on all pixels. Since primitives
can fall anywhere on the screen the task of rendering is viewed as a primitive
to screen sorting problem. There are three places where sorting can take place,
depending on hardware and software setup, according to [Molnar et al., 1994].
Figure 3.1 illustrate those options: Sort-First, where primitives are sorted (dis-
tributed) early in the rendering pipeline - during or before geometry processing,
when their screen-space parameters are not yet known; Sort-Last, where sorting
is done after of during rasterization (usually meaning that values of screen pixels
are already known); Sort-Middle, when sorting happens between geometry pro-
cessing and rasterization (redistributing screen-space primitives).

Only Sort-First, Sort-Last and combinations of two are used in modern parallel
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Figure 3.1: Different sorting strategies for rendering parallelization. Fully parallel ge-
ometry and fragment processing (a); popular screen-space (Sort-First) and data-space
(Sort-Last) distribution schemes (b) and (c); rarely mentioned with respect to modern
hardware, screen-space primitives redistribution (d).

rendering setups due to their conceptual simplicity and natural support in modern
hardware.

Sort-first As originally suggested by [Molnar et al., 1994], the screen is split
into regions and each region is assigned to different renderer; each primitive of
the scene is then transformed only to the extent when it is possible to determine
in which screen region it will fall. Once a primitive is assigned to its region, it is
transferred to the appropriate renderer for further evaluation. After the rendering
of all primitives for a certain screen region is done, the color values of rendered
pixels are sent to display. Figure 3.2 illustrates this process: four renderers (on
the left) are evaluating four parts of the screen independently, when finished, this
parts are copied to the display (on the right) to expose a complete frame.

For efficiency, a hierarchical structure is often employed and screen region
evaluation is done through bounding volumes of groups of primitives, using this
hierarchy, therefore no actual geometry processing over separate primitives is
needed. This approach lead, however, to data duplication, since same bounding
volumes will fall into different screen regions, and not only separate primitives
would have to be duplicated but groups of primitives; by adjusting size of the
group it is possible to find a balance between screen tile classification overhead
and data duplication.

If a certain renderer didn’t yet have the primitives it supposed to render, it
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Figure 3.2: Tiled sort-first parallel rendering using four channels, and showing the final
assembled image on the right.

has to load them from an external source causing data redistribution, possibly on
every frame. Since the camera position and models orientations within a scene are
usually change over time significantly, the problem of redistributing primitives can
become a bottleneck, unless the data is small enough and fits to every renderer’s
memory entirely.

Another issue is in optimal and consistent screen-to-regions split estimation.
For efficient load balancing the amount of information being processed by each
renderer on every frame should be as similar as possible, which could be difficult
to achieve in Sort First, using only rough estimates as it is usually done to avoid
performance penalty of a full geometry processing. On the other hand, the screen
regions consistency is necessary to reduce significant per-frame data redistribu-
tion.

On the bright side, the compositing in Sort First is trivial. It requires minimal
amount of information (e.g., only RGB values of pixels of a single screen) to be
transferred to the destination display; furthermore the amount of image data is a
constant and only depends on the screen size and, unlike with other strategies, it
is independent of the number of renderers or the nature of the rendering itself.

When it comes to porting of existing applications to perform rendering in par-
allel, Sort-First is very straightforward. Since rendering could be done, within
each screen region in the exactly same way as it is done by non-parallel appli-
cations, it is possible to distribute applications having only binary executables,
without changing a single line of the original code or any code recompiling at all,
as it is done by Chromium framework [Humphreys et al., 2002].

Sort-last When primitives are distributed between renderers beforehand, with-
out considering their screen space position, each renderer in the simplest case will
perform evaluation of fragment information for the whole screen. When each
renderer has finished the evaluation, different devices will have pixel values for
similar positions on the screen, therefore screen pixel values have to be commu-
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Figure 3.3: Sort-last parallel rendering of a large volume data set divided uniformly into
slabs. Lower-right window shows final destination channel with back-to-front α-blended
slab images.

nicated between renderers in order to, based on pixels’ visibility, establish final
values for the display.

Compared to sort-first, more data is potentially rendered, and more rasteriza-
tion is done by fragment processors, since it is usually impossible for one renderer
to determine if its pixel data will be occluded by pixel values produced in parallel
by some other renderer during compositing stage, while in case of sort-first fully
occluded data could be determined early.

Compositing overhead itself is dependent on the number of renderers, and,
while it is possible to equalize amount of data being communicated within each
node, the total number of messages and the image data size have linear depen-
dency from the number of rendering resources. Additionally, actual compositing
have to be done through pixel depth and/or transparency comparisons with possi-
ble blending of values, compared to simple pixels values copy of sort-first, thus
even more data have to be sent over network (z-value for depth compositing, opac-
ity values for blending or both).

Different portions of the data are assigned to different rendering resources and
this information is typically known before each new frame starts. Data subdivision
can be static, which will avoid sending additional information over the network,
but can lead to load imbalance, or dynamic, which requires more complicated
data management scheme. In order to balance the load, system would have to
redistribute portions of rendering primitives, or have certain data redundancy, as
shown by [Samanta et al., 2001].

Figure 3.3 illustrates process of Sort-Last rendering and final image composit-
ing: seven windows are featuring different parts of the volumetric model produced
by seven rendering resources; lower-right image shows final composited view that
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is used for displaying. This simple example shows how mush data can be un-
necessary rendered, however if the volume would be semitransparent, rendering
resources would not be wasted.

In order to create a parallel rendering application that allows Sort-Last render-
ing, significantly larger effort have to be invested, comparing to sort-first, not only
regarding correct portions of data redistribution, but also with respect to composit-
ing of the final images. Transparency effects have to be treated with great care,
and many algorithms that work in screen-space domain would fail or have to be
significantly adjusted (screen-space anti-aliasing is one of the examples).

Sort-middle Since geometry transformation of primitives can be done in par-
allel as well as rasterization, the natural moment to sort and redistribute work
would seem to occur between geometry and rasterization stages. Once screen co-
ordinates of primitives are determined and per-vertex information is evaluated by
geometry processors, screen-space primitives could be reassigned to correspond-
ing screen regions and redistributed among rasterization processors. Rasteriza-
tion units could use information about primitives to determine visibility early and
perform very little work on rasterization, while the amount data required to be
redistributed on each frame is potentially large.

With respect to hardware, there are significant difficulties in implementing
Sort-Middle approach for parallel rendering on distributed systems. It can be only
implemented if intercepting of projected geometry before rasterization is sup-
ported and on-the-fly reconfiguration of rasterization units is available for load-
balancing purposes. Due to tight coupling of geometry and rasterization units
in modern high performance visualization hardware, there was minimal effort in
building Sort-Middle cluster-based rendering solutions and very limited area of
their application.

Current work is focused on GPU-based distributed rendering solutions, there-
fore Sort-Middle is not is the scope of interest and is not evaluated in the following
text.

3.2 Image Compositing in Polygonal and Vol-
ume Rendering

In sort-first screen is divided into non-overlapping tiles, thus only color informa-
tion has to be sent for final display, which is simply copied to the desired location.
There is no compositing as such and therefore it doesn’t depend on the rendering
method itself. For sort-last, however, the difference for various applications is
significant.
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In the current document only polygonal and volume rendering are studied in
detail. Polygonal rendering is applied for CAD (or 3D-laser scanned) and terrain
types of models, featuring no transparency, where volumetric data rendering is
essentially transparency-based. The conceptual difference between polygonal and
volume rendering in sort-last is in the way the data is being split and the amount
and type of the information required for final image compositing.

Polygonal rendering A standard approach to determine visibility of a pixel,
when opaque geometry is being rendered, is through its depth value. Together
with screen coordinates, third coordinate of a primitive, representing the distance
(depth) of the primitive from the camera, is computed and stored. When primitives
are rasterized, their screen coordinates and their depth values are interpolated, thus
for every pixel of every primitive on the screen it is possible to compare corre-
sponding depth values in order to figure out which one is closer to the viewer, if
it happens that primitives overlap. In case of GPU rendering, this evaluation of
visibility is extremely optimized, and there is very little to take care of. Once the
rendering is done it is then possible to copy depth values from GPU to RAM (and
vice versa) in the similar manner to how color values are copied.

When different parts of the same data in sort-last are rendered on different
GPUs, most likely that same screen areas will be rendered by different GPUs
more than once (otherwise it could be reduced to sort-first rendering decomposi-
tion), similarly to the single renderer, the depth information would be required to
establish correct order and visibility of the pixels. For each pixel there are extra 24
to 32 bits of depth information, which has to be downloaded form the GPU, sent
over the network along with color information, optionally uploaded to another
GPU, and, finally, GPU or CPU depth-based composited.

The attractive property of polygonal rendering with opaque geometry is that
primitives can be drawn in any order, creating multiple overlaps over different
renderers, but in the end it will all be handled correctly through the depth-based
compositing. For distributed rendering the developer has to take care of depth
buffer (or z-buffer) precision, as it is normally done in case of a single-renderer
(usually handled through setting correct near and far clipping planes), additionally,
for correct compositing across multiple sources, same depth buffer settings should
be used by all renderers. The latter property is easier to satisfy if a global z-
buffer settings are evaluated for the whole data and then distributed among the
renderers before every new frame is rendered. Figure 3.4 demonstrates sort-last
decomposition of a polygonal model, where first four images feature different
parts of the model rendered separately, and then composited to the final destination
window on the right, which is itself was rendering fifth part of the data.
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Figure 3.4: Sort-last parallel rendering of a large polygonal model. Image on the right
is a z-value compositing result of five contributing parts. Different parts of the data are
color-coded for demonstration purpose only.

Volume rendering Transparency-based rendering has to blend overlapping
pixel values rather than discarding occluded information as it is done with opaque
geometry, therefore the order, in which rendering and compositing is done, mat-
ters. In case of volume rendering the data is traversed in front to back or back to
front order, accumulating opacity and color values. If the data is split between ren-
dering resources, one has to make sure final compositing would be at all possible;
this can be guaranteed, for example, by building a binary split tree, where vol-
ume iteratively divided on each iteration into two parts by an intersecting plane,
therefore during bottom-up compositing only two children have to be merged.

In the simplest case, the volume can be divided into slabs along one dimension
as illustrated in Figure 3.5. Each device renders one slab into a partial image,
and final image assembly is performed by perspective-correct back-to-front α-
compositing of the partial frame data, based on the relative positions of the slabs
with respect to the viewer.

Figure 3.3 demonstrates scalable sort-last rendering using an eight-to-one node
compound setup. In this example, final α-compositing of the rendered volume
slabs is performed on the destination display.

As could be seen, compared to opaque polygonal rendering, compositing is
more complicated. The order in which compositing is performed is important and
even if the final display happens on one of the GPUs that was used for rendering,
the image data on that GPU might be out of order and would have to be moved.
When the order can be established per data unit, depth buffer doesn’t require to
be extracted, however, transparency values of pixels have to be read to the RAM
and passed along with the color information anyway. The α-value of a pixel can
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Figure 3.5: Basic back-to-front compositing order of parallel volume slabs in case of
(a) parallel projection and (b) perspective projection. Perspective compositing orders
are 5-4-1-2-3 or 1-2-5-4-3, as well as, for this particular example: 1-5-2-4-3, 1-5-4-2-3,
5-1-2-4-3, and finally 5-1-4-2-3.

occupy between 8 and 32 bits, but even with 8 bits decent results can be achieved,
which makes α-compositing much faster than z-order compositing of polygonal
rendering, despite more time consuming blending.

3.3 Advanced Compositing Methods

Overall performance of a parallel rendering system depends on two key aspects:
rendering performance, and image compositing stage. Rendering performance is
mostly influenced by the chosen rendering algorithm and efficiency of data fetch-
ing, where developer of a generic parallel rendering framework has very little
influence on, and where most of the optimizations are left to the application’s de-
veloper himself. To a certain extent, the efficiency of the compositing stage is
influenced by the rendering output (as it will be shown in the Chapter 5, the lower
amount of pixels on the screen was changed, the more efficient compositing can
be), however, compositing performance can be studied and improved even before-
hand for the case of a general renderer, assuming the worst rendering outcome (the
entire available viewport is changed by every participating renderer).

Regardless of the rendering type it can be assumed that the entire viewport
consist of c pixels, which occupy C bytes if only color information is considered.
The number of machines participating in rendering will be denoted as N . Thus,
in case of sort-first rendering, where final image compositing is performed by one
of the renderers and rendering area is equally divided among the nodes, it will
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be necessary to transmit (N − 1)(C/N), or C(1 − 1/N) bytes, since different
renderers change independent screen regions, and every pixel on the screen has
to be transferred at most only once. With the growing number of machines N ,
the theoretical limit of transmission cost will approach C, which is a constant.
Therefore assembling stage in case of sort-first doesn’t impose any significant
performance penalties and can be often implemented as serial N − 1 to 1 color
assembling for moderate N .

If the sort-last decomposition is chosen, every renderer can potentially change
pixel data over the whole screen, plus additional depth or/and transparency infor-
mation has to be communicated to insure correct compositing. If the amount of
depth information per screen is D, the total cost of serial N − 1 to 1 composit-
ing, where one of the renderer is a destination, would result in (N − 1)(C + D)
bytes. This linear dependency of the number of nodes leads to network saturation,
and if this assembling strategy is used, compositing, as well as overall rendering,
doesn’t scale beyond couple of nodes (if at all). Therefore decentralized com-
positing methods are essential for efficient sort-last rendering.

Further, regardless of which compositing strategy is used, it is possible to
reduce compositing time by applying various compression and screen-space op-
timization techniques, to ensure fast image/transparency/depth information deliv-
ery. Only general methods that do not depend on the rendering method or com-
positing strategy is of the interest in this work, since only those can be applied in
the general parallel rendering framework.

A number of parallel compositing algorithms and their improvements have
been proposed in the past. The major aim usually is in equalizing communication
and the amount of computation between the nodes during compositing. The most
popular generic methods are ”Binary-Swap” (BS) [Ma et al., 1994] and ”Direct
Send” (DS) [Eilemann and Pajarola, 2007], of which only the DS will be evaluated
in the further chapters.

3.3.1 Binary-Swap Compositing

Direct N − 1 to 1 compositing can be considered as a one-stage method. When
all of the nodes are done with rendering of a particular frame, they send partial
image results, possibly at the same time, to the destination node for compositing
(which eventually creates a network and compositing bottleneck). BS is solving
this problem with a multistage distributed compositing approach, where nodes
exchange partial image results among each other, and only during the final step
partial viewports are sent to the destination channel in a sort-first manner.

The partial image exchange and intermediate image compositing is done in
the following way (it is assumed here for simplicity that the data is split equally
among the renderers and that each renderer updates the whole screen): after the
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rendering is done, each of the nodes has rendered 1/N of the data that occupies
the whole screen and consists of C +D bytes; nodes are split into pairs and each
pair exchange half of the color and data information on the screen, and performs
compositing for the other half it receives, therefore each node sends (C + D)/2
bytes and after compositing each node has 2/N of composited data for its half
of the screen; on the second step composted part of the screen is split again into
two parts, and nodes exchange (C +D)/4 amount of information between newly
defined partners, this process is repeated log2(N) times. After log2(N) iterations
each node has fully composited tile of the screen of the size (C +D)/N , and up
to this point each node would exchange and compose (C + D)(1 − 1/N) bytes.
Finally, each node would send its fully composited tile to the destination node in a
sort-first manner, resulting in additional C/N bytes of transmission cost per node.
In total (C +D)(1− 1/N) +C/N bytes are transmitted by additional nodes and
(2C +D)(1− 1/N) bytes by the destination node.
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Figure 3.6: Binary-swap sort-last compositing. The time line on the right is explaining
different stages of the algorithm, such as: Read-Back (R-B); Send/Receive (S/R); Read-
Back, Compositing (R-B-C), and, finally, sort-first-like Assembly. Colored arrows are
showing the corresponding data transfer.

With the increasing number of nodes, per-node communication and composit-
ing cost approaches C+D and 2C+D bytes for additional and destination nodes
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accordingly, which are constants. The total number of bytes sent over the network
(C + D)(N − 1) + C is slightly larger than the one from direct N − 1 to 1 ap-
proach (C +D)(N − 1), and the number of communication and synchronization
points is increased significantly, however the benefit of a nearly constant per-node
compositing cost is much more important.

Figure 3.6 demonstrates BS algorithm using four rendering sources, where
Source 1 is also a destination. The volume rendering example is presented here
with the different source images shaded into different colors for visualization pur-
poses; horizontal lines of frames correspond to different processing stages, where
operations on different sources happen in parallel. After the initial rendering is
done (first raw of images), first and second pair of nodes read-back, exchange and
composite color and opacity information for corresponding halves of the screen.
During the second iteration first and third sources (as well as second and fourth)
read-back, exchange and composite quarters of the partially completed image;
after this step log2(4) = 2 iterations are finished and each source has fully com-
posited 1/4 of the full screen. Last stage is sending of these tiles to the final
destination, which is Source 1.

3.3.2 Direct Send Compositing

There are a few disadvantages of the BS method: the original algorithm works
only with the power of two sources; there are multiple stages of communication,
which leads to additional synchronization points; and the compositing itself is
somewhat overcomplicated for a larger number of nodes. The DS method was
made in an effort to simplify compositing for moderate size visualization clusters,
allowing at the same time for a non-power of two number of nodes.

Conceptually it is much simpler than BS. The idea of DS is to split entire
viewport into the number of tiles equal to the number of nodes, after which each
node is responsible for compositing of only one tile. There is only one stage
during which every node sends parts of the screen to other nodes, at the same
time receiving from every other node the same spatial tile of the screen for which
it is responsible for. If N nodes participate in the exchange, and the screen is
divided into N equally sized regions (tiles), each node would send (C + D)/N
bytes to every other node and receive (C + D)(N − 1)/N bytes to assemble.
After compositing each node would have completed 1/N of the screen which is
sort-first assembled on to the destination channel, in the same way it is done by
BS algorithm.

The amount of information being transmitted and composited by each node is
equal to those of BS method. Having only one exchange stage it is much sim-
pler to configure, the amount of the messages sent per compositing round per
node however might impose issues when this type of compositing is applied in
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Figure 3.7: Direct send sort-last compositing equivalent for the binary-swap example
given in the Figure 3.6.

a massively parallel setup with thousands of nodes, as was demonstrated by [Yu
et al., 2008]. In the moderately sized setups (10-20 nodes), which are usually used
for interactive visualization, this limitation doesn’t produce any issues, since the
number of rendering sources is relatively low.

Figure 3.7 illustrates DS compositing for the same setup used in the Figure 3.6
for BS. Four nodes, with one of the nodes being a destination, are performing
volume rendering of 1/4 of the data, the screen is then split into four equally sized
horizontal stripes. During the single compositing step, each node reads-back three
of those stripes and sends them to the other three renderers. Each source performs
compositing of four parts corresponding to the same screen tile, that it receives
from other sources, and then sends color information of a complete tile to the
destination node.

Figure 3.8 illustrates in detail operations performed by each source and the
data flow for the example given in Figure 3.7. In the beginning of each frame,
each source has to clear the viewport and draw a new portion of the data (these
operations are represented with black blocks), after which the compositing oper-
ations are done (colored blocks). Each channel reads-back 3× color and opacity
information (depth and color buffers in case of z-order compositing for polygo-
nal rendering examples), receives and composites the same amount of data, and,
finally, every node, except the destination, reads-back and transmits a portion of
the corresponding color buffer, while destination receives and assembles this data
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in a sort-first fashion.
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Figure 3.8: Operations performed by each source and the data flow in case of Direct
Send compositing presented on Figure 3.7.

3.3.3 2-3 Swap Image Compositing

Due to various communication bottlenecks it is not currently possible to imple-
ment interactive rendering, where hundreds of nodes contribute to the final image,
therefore for interactive visualization smaller number of nodes is usually used,
thus DS is typically suitable in such setups. However, for non-interactive render-
ing with large number of processors, DS produces too many communication mes-
sages at the single compositing stage, introducing a significant bottleneck in the
switching and compositing hardware. In such scenarios methods like BS is more
suitable, due to limited number of communications within the nodes on each stage
of compositing. The 2-3 Swap Image Compositing, proposed by [Yu et al., 2008]
is a generalization of the BS method, where the limitation of the power of two
nodes from the classical BS is removed.

The observation exploited in 2-3 Swap Compositing method is that on each
stage BS essentially performs DS compositing within pairs of nodes, therefore it
is possible to group nodes not only in pairs but also in triplets, where local DS is
then performed. This allows for limiting of the communication on each stage to
up to four nodes. The method is not described here in detail due to its specific
area of application (i.e. supercomputers); more information can be found in the
original publication by [Yu et al., 2008].
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3.4 Image Data Compression

To reduce transmission cost of pixel data, image compression [Ahrens and Painter,
1998; Yang et al., 2001; Takeuchi et al., 2003; Sano et al., 2004] and screen-space
bounding rectangles [Ma et al., 1994; Lee et al., 1996; Yang et al., 2001] have been
proposed. However, with modern GPUs these concepts do not always translate to
improved parallel rendering as increased screen resolutions and faster geometry
throughput impose stronger limits under which circumstances these techniques are
still useful. A disproportional growth and shift in compositing-cost that increases
with the number of parallel nodes can in fact negatively impact the overall per-
formance, as will be shown later. Therefore, care has to be taken when applying
image compression or other data reduction techniques in the image compositing
stage of parallel rendering systems.

Basic run-length encoding (RLE) has been used as a fast standard to improve
network throughput for interactive image transmission. However, it only gives
sufficient results in specific rendering contexts and fails to provide a general im-
provement as will be shown in Chapter 4. RLE only works to compact large empty
or uniform color areas but is often useless for non-trivial full frame color results.
Two enhancements to improve the situation, per-component RLE compression
and swizzling of color bits, are analyzed in the following text.

More complex (and lossy) image compression techniques (e.g., such as LZO
or EZW [Shapiro, 1993]) may promise better data reduction, however, at the ex-
pense of significantly increased compression cost which renders many solutions
infeasible in this context (see Figure 3.11). Additionally, lossy compression (e.g.,
such as used in VNC [Richardson et al., 1998]) may only be tolerable when com-
pression artifacts are masked by motion and high frame rates. In Chapter 4 the
benefit of YUV subsampling, also combined with RLE, are studied, as it can pro-
vide very fast and effective compression for scenes in motion, and lossless recon-
struction can easily be incorporated by incremental transmission of the missing
data from the last frame. Hence the focus is on a few provenly simple and very
fast techniques such as RLE and YUV subsampling.

3.4.1 Run-Length Encoding

For the basic RLE method a fast 64-bit version is used. It compares two pixels at
the same time (8-bit per channel RGBA format). While this method is very fast
it shows poor compression results in most practical settings. A general concept
in image compression is to treat color components separately, as illustrated in
Figure 3.9. Results on the different RLE schemes are reported in the Chapter 4.

A second improvement is bit-swizzling of color values before per-component
compression. That way the bits are reordered and interleaved as shown in Fig-
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Figure 3.9: Comparison of 64-bit and per-component RLE.

ure 3.10. Now per-component RLE compression separately compresses the higher,
medium and lower order bits, thus achieving stronger compression for smoothly
changing color values.
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Figure 3.10: Swizzling scheme for reordering bits of 32-bit RGBA values.

While LZO is considered to be a very fast general compression technique,
Figure 3.11 demonstrates that it performs worse than swizzle RLE when applied
in real-time rendering.

3.4.2 YUV Subsampling

Lossy compression in presented study consists of RGB to YUV color transfor-
mation and chroma subsampling (4:2:0) since it allows fast computation, good
general compression and incremental reconstruction to full chroma color if nec-
essary. Without an additional RLE stage, a compression ratio of 2 : 1 can always
be achieved this way with good image quality, especially for dynamic motion.
Color transformation, subsampling and byte-packing can all be done efficiently in
a fragment shader on the GPU such that not only network transmission but also
read-back from the frame buffer will be improved.

Figure 3.12 illustrates the YUV subsampling and byte packing. While lumi-
nosity values are packed to the left of a 2×2 4-channel pixel block, the chromatic-
ity values are averaged. However, to reduce color distortion at silhouettes only
non-zero, non-background color values are averaged. Alpha values are pair-wise
averaged on a scan line, and are not needed in the case of sort-first rendering.

The particular color sampling and packing pattern has been chosen to easily
support subsequent RLE compression. The above outlined RLE method processes
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Figure 3.11: Comparison between LZO and swizzle RLE compression for sort-first ren-
dering of the David Head model. Even though LZO provides better compression, the
overall rendering performance is lower due to slower compression times.

pixels in scan-line order and thus component-wise RLE can directly be applied
after YUV transformation and subsampling.
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B3G3R3 A3

B2G2R2 A2
B4G4R4 A4

Y1 U1 V1 A1
Y3 U3 V3 A3
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Y3 An
Y2
Y4RGB to YUV

Average

Figure 3.12: Lossy RGB to YUV transform and subsampling.

An example of chroma subsampling is presented on Figure 3.13. The artifacts
of YUV compression are not visible on the screen, unless significant magnifi-
cation of the image is performed, the effect is even less noticeable if motion is
present in the frame.
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6 x Zoom
YUV subsampled

RGB regular

Figure 3.13: Comparison of YUV compression to the regular uncompressed image. Arti-
facts can be noticeable in the areas of sharp color edges, only after significant magnifica-
tion is applied. In this example David Head model is used, painted in pseudo-colors for
better effect demonstration.





4C H A P T E R

PARALLEL RENDERING
PERFORMANCE EVALUATION

In this chapter basic performance of Equalizer parallel rendering framework and
its various parts are evaluated in order to understand the overhead of the parallel
system itself. Additional study is performed to determine which methods are the
most efficient for color and depth information compression in case of sort-first and
sort-last parallel rendering, and to estimate bottlenecks of polygonal and volume
rendering on a PC cluster. Further, some aspects of automatic and manual load
balancing for sort-last, and static versus dynamic tiles selection for sort-first, in
case of eqRASTeR parallel terrain rendering application, are revealed.

4.1 Hardware Setup and Data Description

Two different PC clusters were used for the evaluation. Most of the tests were car-
ried out on a 10-node cluster, Hactar, with the following technical node specifica-
tions: dual 2.2GHz AMD Opteron CPUs; 4GB of RAM; one or two GeForce 9800
GX2 GPUs and a high-resolution 2560×1600 pixel LCD panel; 2Gbit Myrinet
and switch, as well as 1Gbit Ethernet network. Unless stated otherwise, it is as-
sumed that Hactar cluster was used for the test. The second configuration, Horus,
consisted of 16 nodes with the following technical details: dual 2.4GHz AMD
Opteron CPUs, 4GB of RAM (one node has 2 dual-Core 2GHz AMD Opterons
and 32GB RAM), Quadro FX4500 PCIe graphics; 1Gbit Ethernet network and

41
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switch as well as local Infiniband 4x networks.
A number of different polygonal, volumetric and elevation (terrain) models of

different sizes were used in the study. Table 4.1 lists used models according to
their type and size; reference to a screenshot figure (if available) is given in the
last column.

Model Name Size Figures
P Hip 1 · 106 Fig. 5.13
P David head 4 · 106 Fig. 3.2
P Power Plant 13 · 106 Fig. 4.1
P David 1mm 56 · 106 Fig. 3.4
V Bucky Ball 323 Fig. 3.6
V Neghip 643 Fig. 6.9
V MRI Head 2563 Fig. 3.3
V Engine 2563 Fig. 1.1 (c)
V Femur 21.6 · 109 Fig. 6.5
T Zurich 42 · 106 Fig. 1.1 (b)
T Puget Sound 162 · 106 Fig. 5.12
T SRTM 322 · 106 Fig. 4.10

Table 4.1: A list of various models used in this thesis for performance study and visual-
ization purposes. First column stands for the data type: P - Polygonal, V - Volume, and
T - DEM (Terrain); size is measured in polygons, voxels and vertices accordingly. Last
column references figures containing screenshots of the models if available.

The tests were typically performed in the following way: in case of com-
pact polygonal or volume models (like David head or Skull), model was placed
in the center of the screen occupying roughly the whole available viewport and
rotating around its x and y axes; in case when one dimension was significantly
larger (David 1mm model), the object would be placed horizontally or vertically
in the middle of the screen and rotated around its longest axis (see Figure 4.9).
Two additional testing setups were used with Power Plant model, where camera
path was set to circle around or to pass through the model, they are referenced as
Power Plant Around and Power Plant Through accordingly (or PPLA and PPLT
for short), the screenshots of the Power Plant model and corresponding PPLT path
are given in the Figure 4.1.

For terrain rendering two main tests are conducted: first, where camera swipes
above the terrain and another, where camera is zooming into the terrain, they are
referenced to as Turn and Zoom respectively (Figure 4.10 features screenshots
form these tests along the aforementioned trajectories); these test are performed
using SRTM and Puget Sound models, also called 32K and 16K due to their size.
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Additional Fly Over setup, with the camera making a larger tour over the terrain
is used once with the Puget Sound model in the next chapter (Figure 5.12).

(a) (b)

(c) (d)

Figure 4.1: Typical view of the Power Plant fly-through path(a), and screen shots along
the path (b,c,d).

4.2 Equalizer Framework Performance

First series of tests related to the performance of the Equalizer itself, when no
or very little rendering is actually done. These tests are used to prove that the
framework doesn’t introduce much of the overhead on its own, and to eliminate
the possibility of the framework’s influence on other, more specific, tests.

Execution loop in Equalizer The application, written using Equalizer
framework, solely drives the rendering, that is, it carries out the main render-
ing loop only, but does not actually execute any rendering. Although depending
on the configuration, the application process may also host one or more render
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Figure 4.2: Simplified execution flow of an Equalizer application, omitting event handling
and application-node rendering threads.

client threads, as described below. When a configuration has no additional nodes
besides the application node, all application code is executed in the same process,
and no network data distribution has to be implemented.

During initialization of the server, the application provides a rendering client.
The rendering client is often, especially for simple applications, the same ex-
ecutable as the application. However, in more sophisticated implementations
the rendering client may be a thin renderer which only contains the application-
specific rendering code. The server deploys this rendering client on all nodes
specified in the configuration. The main rendering loop is quite simple: the appli-
cation requests a new frame to be rendered, synchronizes on the completion of a
frame and processes events received from the render clients. Figure 4.2 shows a
simplified execution model of an Equalizer application.
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Sort-first decomposition Equalizer supports arbitrary rectangular view-
port tiling. When multiple machines are combined with a sort-first configuration,
a user has to specify which part of the viewport is going to be rendered on which
resource. Configuration supports hierarchical screen decompositions and, in case
of static tile distribution, screen tiles can be simply assigned in a one level com-
pound; when dynamic load balancing is used, Equalizer can automatically create
a k-d tree-like partitioning of the screen and then for every frame adjust the size
of created tiles based on their rendering timings from previous frames.

Sort-last range specification When sort-last decomposition is used, Equal-
izer operates on so-called ”data ranges”. In this mode the whole data is mapped
to a one-dimensional range of [0..1.0]. This means that Equalizer can request
different renderers to evaluate various parts of the data by assigning different in-
tervals from this ”complete” data range; if the different ranges cover the whole
[0..1.0] interval, then after compositing final viewport will have complete data,
as if it would be rendered on a single machine. In terms of Equalizer configura-
tion, range [0..0.5], for example, would mean ”first half” of the data and [0.5..1.0]
- ”second half”, if rendered by two machines the total amount would be 100%.
Mapping of this range to actual data values is left to an application developer.

a b c d e f g h

0.125

0.25

0.375

0.5

0.625

0.75

0.875

i j

k

l

[0 0.25 0.5 0.75 1.0][0 1.0]

(a) (b)

Figure 4.3: Difference in sort-last range selection between eqPly (a) and eqRASTeR
(b) applications. In case of eqPly the whole tree is mapped to the [0..1] range, while
eqRASTeR maps the same range to the rendering data selected for the current frame.

For the eVolve volume rendering application one-dimensional data range is
directly mapped to one of the volume’s dimensions, creating volume slabs as
demonstrated in the Figure 3.3, where full range was split into seven consecutive
sub-ranges of equal size, and compositing was done according to explanations
given in Section 3.2. In case of eqPly polygonal renderer, the range is mapped
to a k-d tree structure that contains polygonal data, the mapping is done accord-
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ing to the number of triangles contained in each subtree; the final data is stored
only within leaf nodes, since no LOD technique is applied. In eqRASTeR the
strategy for range mapping is different. For every frame eqRASTeR selects a
number of tree nodes for rendering, then range mapping is done over these se-
lected elements. Figure 4.3 demonstrates this difference: no matter what data is
visible within final viewport, if four renderers are assigned equal ranges [0..0.25],
[0.25..0.5], [0.5..0.75], and [0.75..1.0], renderers in eqPly will always render tree
nodes ab, cd, ef, and gh accordingly, where eqRASTeR first would select a sub-
set of the data, depending on estimated LOD, then split the work between four
renderers equally, i, j, k and l is just one example of the outcome.

Rendering examples of equal range subdivision for eqPly are presented on
Figures 3.4 and 3.13, where different colors correspond to different data ranges.
An example of eqRASTeR sort-last decomposition can be found in Figure 5.12.

Basic evaluation First, the typical distributed image compositing and thus
parallel rendering performance limits are identified, when image compression is
not used. This will also demonstrate that the used parallel rendering framework is
in fact very resource efficient and achieves the expected limits.

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

FP
S	  

Nodes	  

Performance	  for	  1280x1024	  res.	  No	  compression	  

	  1	  Gbit/s	  	  Theor.	  Max.	  
	  1	  Gbit/s	  	  Transmit	  Only	  
	  1	  Gbit/s	  	  No	  Rendering	  
	  1	  Gbit/s	  	  Full	  
	  2	  Gbit/s	  Theor.	  Max.	  
	  2	  Gbit/s	  	  Transmit	  Only	  
	  2	  Gbit/s	  	  No	  Rendering	  
	  2	  Gbit/s	  	  Full	  

(a)

0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

FP
S	  

Nodes	  

Performance	  for	  2560x1600	  res.	  No	  compression	  

	  1	  Gbit/s	  	  Theor.	  Max.	  
	  1	  Gbit/s	  	  Transmit	  Only	  
	  1	  Gbit/s	  	  No	  Rendering	  
	  1	  Gbit/s	  	  Full	  
	  2	  Gbit/s	  Theor.	  Max.	  
	  2	  Gbit/s	  	  Transmit	  Only	  
	  2	  Gbit/s	  	  No	  Rendering	  
	  2	  Gbit/s	  	  Full	  

(b)

Figure 4.4: Maximal theoretical and real image throughputs for (a) 1280x1024px and (b)
2560x1600px resolutions.

Figure 4.4 shows different image throughput limits for two different frame
buffer resolutions, without using image compression, in the context of sort-first
rendering. In sort-first rendering, given N rendering nodes (one of which is also
the display node), the network will be loaded with the cost of transmitting (N −
1)/N of the full frame buffer image data to the final display node. Hence with
increasing N , the image transmission throughput and thus compositing speed is
expected to decrease. In the limit (N → ∞) a maximal frame rate of µ/sFB can
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be expected for a given network bandwidth µ and frame buffer size sFB. Using
netperf, a realistic achievable data transmission rate of µ = 115MB/s and µ ≤
240MB/s for 1Gbit and 2Gbit networks is evaluated. Thus for a frame buffer
size sFB of 1280×1024 (5MB) up to 23 fps or 48 fps is expected, and for 2560×
1600 (16MB) 7 fps or 15 fps respectively for the different network speeds. The
maximal achievable frame rates limited by the bandwidth as described above are
indicated in Figure 4.4 with Theor. Max..

Ignoring any rendering costs but only focusing on image throughput and com-
positing, the experiments show that chosen parallel rendering setup is efficient
and approaches the expected limits. The Transmit Only graphs in Figure 4.4 in-
dicate the system’s limit simply for transmitting the partial frame buffer results
to the destination, which closely follows the expected limits in particular for the
larger frame buffer. The No Rendering curves for the entire sort-first composit-
ing task, but still not accounting for actual rendering itself, indicate the hard lim-
its of the rendering system if no image compression is used. These results still
closely follow the bandwidth constraints and theoretical expected limits, and thus
demonstrate that the sort-first compositing stage does not introduce any significant
overhead.

A full rendering test, labeled as Full in Figure 4.4, with only a small polygo-
nal object, further confirms the limits and resource efficiency of the system. The
curves show that the frame rate is quickly limited by the image throughput and de-
creases accordingly for larger N . Only for a small frame buffer and slow network
configuration the frame rate initially increases when adding rendering nodes until
being dominated by the image throughput constraints. Hence apparently there is
no notable overhead introduced in the parallel rendering system.

Basic scalability for larger models is confirmed in Figures 4.5(a), 4.5(c), and
4.5(e), showing what can be reached in the best case just from rendering, this time
not taking any image transmission and compositing into account. Both sort-first
and sort-last parallel rendering improve rendering speed almost linearly for uni-
formly distributed geometry (Figure 4.5(a)), However, sort-first scalability starts
to flatten out at some point as expected due to smaller viewports but constant
per-node culling costs. For the large Power Plant model, the results in Fig-
ures 4.5(c) and 4.5(e) show that sort-last rendering can scale superlinearly due
to GPU caching effects. It also shows that for uneven distributed geometry, a
regular sort-first screen decomposition cannot improve rendering speed, which is
expected as well.



48 4 PARALLEL RENDERING PERFORMANCE EVALUATION

0	  

50	  

100	  

150	  

200	  

250	  

300	  

350	  

400	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

FP
S	  

Nodes	  

David	  Head	  Pure	  Rendering	  Performance	  

2D	  (1280x1024)	  
2D	  (2560x1600)	  
DB	  (1280x1024)	  
DB	  (2560x1600)	  
Linear	  (1280x1024)	  
Linear	  (2560x1600)	  

(a)

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

FP
S	  

Nodes	  

DHead	  x1;	  1280x1024;	  1Gbit/s	  	  

None	   RLE	  64	  
RLE	  Comp	   RLE	  Swizzle	  
YUV	   YUV	  RLE	  64	  
YUV	  RLE	  Comp	   YUV	  RLE	  Swizzle	  
Theore9cal	  Maximum	  

(b)

0	  

20	  

40	  

60	  

80	  

100	  

120	  

140	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

FP
S	  

Nodes	  

Power	  Plant	  (around)	  Pure	  Rendering	  Performance	  	  

2D	  (1280x1024)	  
2D	  (2560x1600)	  
DB	  (1280x1024)	  
DB	  (2560x1600)	  
Linear	  (1280x1024)	  
Linear	  (2560x1600)	  

(c)

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

FP
S	  

Nodes	  

DHead	  x2;	  1280x1024;	  1Gbit/s	  	  

None	   RLE	  64	  
RLE	  Comp	   RLE	  Swizzle	  
YUV	   YUV	  RLE	  64	  
YUV	  RLE	  Comp	   YUV	  RLE	  Swizzle	  
Theore9cal	  Maximum	  

(d)

0	  

30	  

60	  

90	  

120	  

150	  

180	  

210	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

FP
S	  

Nodes	  

Power	  Plant	  (through)	  Pure	  Rendering	  Performance	  	  

2D	  (1280x1024)	  
2D	  (2560x1600)	  
DB	  (1280x1024)	  
DB	  (2560x1600)	  
Linear	  (1280x1024)	  
Linear	  (2560x1600)	  

(e)

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

FP
S	  

Nodes	  

DHead	  x4;	  1280x1024;	  1Gbit/s	  	  

None	   RLE	  64	  
RLE	  Comp	   RLE	  Swizzle	  
YUV	   YUV	  RLE	  64	  
YUV	  RLE	  Comp	   YUV	  RLE	  Swizzle	  
Theore9cal	  Maximum	  

(f)

Figure 4.5: Rendering-only performance: (a) David Head, (c) Power Plant (fly-around),
and (e) Power Plant (fly-through). Different color compression for David Head model: (b)
normal rendering speed, (d) double rendering load, (f) four times rendering load (same
model rendered one, two and four times respectively). Theoretical maximum lines cor-
respond to the best speed possible when only considering the time required for uncom-
pressed image transmission over the given network.
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4.3 Color Compression in Sort-First

To evaluate color compression benefits in relation to the basic image throughput
RLE, per-component RLE, swizzle RLE and YUV subsampling have been ana-
lyzed. While YUV is lossy, it can often be used without noticeable loss in visual
quality (see also Figure 3.13), and it can be combined with RLE. Figures 4.5(b),
4.5(d), and 4.5(f) show the overall frame rate due to image compression for vary-
ing geometric model complexity. It shows that basic RLE does not help for non-
uniform color images. While per-component or swizzle RLE are more costly,
they can achieve an improvement. Swizzle RLE works reasonably well as it can
improve image transmission more significantly.

YUV subsampling reduces the chromatic color components by a factor of
4 and thus the total image size by 2 at minimal extra image processing cost.
This data reduction shows immediate effects on the frame rate as shown in Fig-
ures 4.5(b) and 4.5(d). It is also confirmed that basic RLE does not improve upon
YUV (compare curves YUV with YUV RLE 64). However, per-component or
swizzle RLE based compression on top of YUV subsampling can further improve
the image throughput and overall frame rate (see curves YUV RLE Comp with
YUV RLE Swizzle).

Figures 4.5(d) and 4.5(f) show the effect of pure rendering limits for larger
models and consequently achievable parallel speedup. If the 3D data complexity
is so high that rendering itself is the bottleneck, adding more nodes improves
sort-first parallel rendering until the image throughput limit is reached (see curves
None with RLE 64). Only after that intersection point, image compression has a
noticeable effect.

Figure 4.5 furthermore confirms the 23fps limit for N → ∞, with sFB =
1280×1024 screen and bandwidth µ = 115MB/s since all measures converge
to that, unless compression is applied. These results will scale appropriately with
screen resolution and network bandwidth.

The complete composing performance is defined by:

1. Read-back;
2. Compression (if compression is used);
3. Transmit;
4. Decompression (if compression is used);
5. Per-image compositing.

The results in Figure 4.5 help to further understand the influence of different
approaches to sort-first rendering.

In the tests above the per-vertex colored David Head model was placed in
the center and nearly covering the full screen. The animation rotated the model
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around x and y. The results confirm that image transmission has the most sig-
nificant influence compared to read-back and compositing which cause very little
overhead. Basic RLE compression proves to have poor performance and only
swizzle RLE can sufficiently compensate extra compression cost with increased
image throughput, outperforming in total other RLE versions.

YUV subsampling alone enhances performance due to the fixed data reduc-
tion, which can further be improved in combination with per-component or swiz-
zle RLE.

RLE compression is implemented using OpenMP on the CPU, however, the
parallel framework is already running four threads and the CPUs are fully used.
If more than four cores are available, one could expect improved performance of
RLE (doubling of RLE speed on 2 cores was observed, when tested without the
rest of the framework running).

4.4 Sort-Last Performance

Sort-last parallel polygon rendering uses z-buffer in order to perform z-value com-
positing of partial rendering results, as it was explained in the Section 3.2. Thus
the z-depth buffer data also has to be compressed and sent over the network. The
compression methods in case of sort-last are determined for depth buffer first, and
then for color component, to ensure optimal results.

Depth component compression To determine the best depth component
compression color compression was set to RLE and serial sort-last compositing
was used, which imposes a network image transmission load proportional to the
number N of rendering nodes. Color RLE was used since it removes blank screen
space effectively which is typical for sort-last rendering. In Figure 4.6 uncom-
pressed depth data is indicated in the graph by None. Measures are shown for
different data models (David Head, Power Plant around and fly-through), network
bandwidth and for N = 2, 6, 10 nodes.

For uniform partitioning of geometry each node is rendering 1/N of the data
and less screen space is covered with increasing N for sort-last rendering. Hence
empty-pixel skipping is more important than actual depth-value compression to
transmit the full-frame sized depth buffer to the final destination node. This is
supported in Figure 4.6 with simple RLE depth compression performing better
than the more complex per-component or swizzle variants.

However, in the case where partitioning of the data does not lead to sparse
images for sort-last compositing, but most of the frame buffer is covered, per-
component RLE compression shows better results. This experiment is reported
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Figure 4.6: Image throughput performance comparison of different depth-component
compression methods.

in the last two columns of Figure 4.6 where the model is rendered twice on two
nodes, covering the entire frame buffer on both nodes.

Color component compression To determine the best color compression
depth compression was fixed to RLE. As observed before, the images generated
from sort-last rendering are likely to have large empty regions with increasing N .
When using Direct Send (DS) compositing (details are given in Section 3.3.2),
each node renders a part of the 3D data into a full-sized frame buffer, followed by
depth-compositing of a part of the entire viewport. The composited sub-regions
are eventually sent to the destination node for final assembly.

Figure 4.7(a) shows that simple RLE compression is effective for color if in-
creasingly larger parts of the partially rendered images are empty. YUV subsam-
pling has much less effect for such sparse image data. Almost identical results
were found for rendering of the Power Plant model.

In contrast to serial compositing, DS exhibits a constant amount of image
data that has to be transmitted between the parallel rendering nodes, which is
also evidenced in Figure 4.7(b). Due to the split-frame compositing and different
distribution of rendering and pixel data, YUV subsampling can notably improve
image throughput here.
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Figure 4.7: Image throughput comparison of different color compression methods for (a)
serial and (b) Direct Send sort-last compositing.

The results suggest that for a small number of nodes, depending on the net-
work bandwidth, serial compositing performs better than DS. DS will be benefi-
cial for a larger number of rendering nodes and large complex 3D data sets.

4.5 Distributed vs. Streaming Systems

Despite Equalizer and Chromium having slightly different main targets, flexi-
ble configuration and scalability on one side and transparent abstraction of the
OpenGL API on the other side, only a limited experimental evaluation is provided
here.

0	  

1	  

2	  

3	  

4	  

5	  

6	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	  

FP
S	  

Nodes	  

Display	  Wall	  ConfiguraAon	  

Equalizer	  
Chromium	  

Figure 4.8: Frame rate performance comparison between Chromium and Equalizer for
tiled display wall configurations of up to 12 screens and nodes. (Horus)
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For this test a simple display wall configuration was used, as shown in Fig-
ure 4.9, with a static model, rotating about its vertical axis, placed such that it
sufficiently covers the different screens. A standard tile-sort Chromium configu-
ration has been compared to a simple Equalizer display-wall compound setup. The
polygonal model is rendered using eqPly and uses display lists for the static geom-
etry. Using display lists allows Chromium to send geometry and texture data once
to the rendering nodes (retained mode rendering) and display them repeatedly us-
ing glCallLists() which is inexpensive in terms of network overhead [Bethel et al.,
2003].

...

...

...

Figure 4.9: Display wall configurations to compare Equalizer and Chromium using 1, 2,
4, . . . and 12 screens and rendering nodes.

According to [Humphreys et al., 2002; Bethel et al., 2003; Staadt et al.,
2003], a tile-sort display-wall setup with static geometry rendered in retained
mode should be reasonably favorable for Chromium because the display lists
have to be transmitted only once over the network, and only simple display calls
will be processed and distributed by Chromium for each rendered frame. Fig-
ure 4.8 shows the experimental results of the display-wall comparison between
Chromium and Equalizer. One can clearly observe that while Chromium initially
increases performance when adding nodes, it quickly stagnates and even decreases
when more nodes are added. In contrast, Equalizer continually improves perfor-
mance with more added nodes and only exhibits a smooth drop-off in speedup,
due to the expected synchronization and network overhead as the rendered data
gets negligible in size per node. This performance difference may also be due to
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the fact that Equalizer can benefit from distributed parallel view-frustum culling.
Similar results were demonstrated by [Doerr and Kuester, 2011], where CGLX

framework was used to manage display wall installation. These tests also confirm
that Chromium is suitable only in case of low geometry count, and distributed
rendering solutions are necessary otherwise.

4.6 Terrain Rendering Application Performance

Porting standalone applications to parallel rendering frameworks like Equalizer is
relatively simple, in case when no special care about data distribution has to be
worried about. In fact, in order to support sort-first decomposition, very little work
is required. Any rendering application has a viewport and a camera setup for using
a single window, developer has to replace those initializations with the information
provided by the framework, after which sort-first, stereo, time multiplex, display
wall and any combinations of these setups are immediately become available, if
Equalizer is used.

Figure 4.10: Frames from two test sequences of eqRASTeR terrain renderer. Top row:
Turn (camera is flying and turning in horizontal plane); bottom row: Zoom (camera
zooms into the terrain).

In order to support sort-last decomposition, more work is necessary. There are
two major tasks to be solved: data range interpretation and partial image com-
positing. One-dimensional data range of [0..1] provided by Equalizer has to be
mapped to the actual data, as explained in the Section 4.2, and if any transparency
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was used during the rendering, the developer has to take care about correct com-
positing order. Equalizer provides default implementation of z-buffer-based com-
positing of opaque geometry, therefore no special care is required if transparency
was not used (one option, in case of small number of semitransparent data within
the frame, is to draw all semitransparent objects in a second pass on the desti-
nation viewport only, this way all z-buffer-based compositing would be finished
before and will not affect semitransparent regions).

Following these guidelines RASTeR terrain rendering application was ported
to Equalizer (eqRASTeR) in order to support parallel rendering capabilities. Stan-
dalone RASTeR employs out-of-core rendering, thus data management was not
an issue, further, RASTeR only performs opaque geometry rendering, therefore
default compositing of Equalizer was suitable. Details about RASTeR and its
parallel implementation can be found in [Goswami et al., 2010].
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Figure 4.11: Graphs showing rendering performance on 10 machines in parallel using
DEM models of 32k×32k SRTM grids with camera in turning and zooming trajectories
respectively. 2D - Rendering refers to sort-first rendering, 2D to sort-first rendering with
compositing, DB - Rendering to sort-last rendering, DB to sort-last rendering with com-
positing.

eqRASTeR application was then evaluated on the Hactar cluster. Basic scal-
ability tests were performed using sort-first and sort-last decomposition modes.
Static vertical tiles were used for sort-first, as they provide nearly equal triangle
per-renderer distribution in this particular application, and data range to render-
ing set mapping was done in case of sort-last, as explained earlier in this chapter.
Additionally, Regions Of Interest method was used to accelerate read-back trans-
mission and compositing (the method is explained later in the Chapter 5).

Figure 4.11(a) present frame rate graph for moving forward and turning cam-
era trajectory, while Figure 4.11(b) presents one for the camera zooming into the
terrain (screenshots of the corresponding test sequences are presented on Fig-
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ure 4.10). As could be seen from these graphs, in both sort-first (2D) and sort-last
(DB) parallel rendering modes, pure drawing performance (labeled as 2D - Ren-
dering and DB - Rendering respectively) scales at least linearly. Super-linear
performance of rendering can be explained by reduced data fetching since each
machine fetches only those terrain blocks that are not already cached locally in
main memory. The reduced size of the rendering set on a single machine allows it
to be cached more efficiently in GPU and main memory, hence avoiding repeated
data fetching. Pure sort-last rendering scales better than sort-first because each
machine renders a similar number of triangles, thus data is well distributed among
them. However, this cannot be ensured in the case of sort-first task decomposition.

Overall rendering performance depends largely on the compositing stage of
the parallel rendering framework, which includes reading of partial images back
from GPUs, transmitting them to the destination node and assembling final frames
for display. The decrease of the final performance (labeled as 2D and DB) with
increasing number of nodes on Figure 4.11 happens due to the image throughput
bottleneck. The amount of data that has to be sent over the network in case of
sort-last rendering and compositing is roughly twice larger than for sort-first, thus
network saturation happens earlier despite the rendering itself being faster. In
presented case, sort-last network saturation happens at around 15fps, which is
independent of the drawing speed. That means if the initial rendering on one node
is already fast, overall performance will not scale well with more rendering nodes.

The basic scalability tests demonstrate that performance of distributed RASTeR
rendering scales very well. Overall performance, however, is mostly limited by
network throughput and by the compression used for partial images.

4.7 Automatic vs. Manual Load Balancing

Static distribution of rendering tasks is hardly desirable in an interactive render-
ing environment. Changes in the viewport and camera setup would usually lead to
unequal load on rendering devices, therefore screen tiles or data selection have to
be adjusted on the fly. Equalizer solves this problem by measuring time that was
spent on rendering of different tiles or data intervals, and making an adjustment of
tile or data range sizes dynamically. Despite these measurements only accommo-
dating for previous time information and not performing any forward correction,
automatic LB works fairly well in eqPly and eVolve, where the whole rendering
data fits to RAM and GPU memory. In case of eqRASTeR the situation is differ-
ent because out-of-core rendering require data fetching from slow local HDD, or
even slower network storage.

The following two experiments were performed in order to understand if auto-
matic load balancing can improve rendering performance of a reasonably sophis-
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ticated application which uses its own data management strategy, where default
tile and data split are replaced with load balanced solution.

It was shown by [Goswami et al., 2010] that vertical tiles are preferable over
horizontal once in sort-first decomposition mode. The horizon of the terrain, ren-
dered by eqRASTeR, contains more polygons than the foreground, since more
geometry is visible within the same screen area there, and, due to regular nature
of the elevation data, vertical tiles of similar width result in almost even triangle
count per stripe (because elevation shifts happen within the same stripe). Fig-
ure 4.12 demonstrates this effect clearly.

Triangles:

~47M

~13M

~3M

~1M

(a)

Triangles:

~17M~13M ~17M ~17M

(b)

Figure 4.12: Triangle count (millions) in horizontal (a) and vertical (b) tiles in terrain
rendering with eqRASTeR. Vertical tiles have closer to even triangle count per tile, and
therefore more suitable for rendering in parallel.

In case of sort-last, data range was already mapped in such a way, that equally
sized range intervals would result in similar number of triangles rendered by each
node, therefore data was already manually load-balanced in this sense. Perfor-
mance results were satisfying since the homogeneous system with equal rendering
resources on each node was used for these tests, however such manual balancing
might not work that well in a heterogeneous system. Enabling load balancing over
data ranges allows potential inequality in the triangle count, and therefore allows
processing of more data by faster renderers. Evaluating dynamic load balancing in
case of eqRASTeR will show if automatic range adjustment can at least maintain
similar results to manually assigned decomposition in heterogeneous setup.

Figure 4.13 shows the obtained result of the rendering only evaluation. The
setup was similar to the one used earlier in Section 4.6 for basic performance eval-
uation. Lines 2D - Rendering; No LB and DB - Rendering; No LB correspond
to 2D - Rendering and DB - Rendering for sort-first and sort-last decomposi-
tions on the Figure 4.11 accordingly. New data is represented by 2D - Rendering;
Automatic LB and DB - Rendering; Automatic LB.

The curves, where automatic load balancing was used, are flattens out very
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Figure 4.13: Rendering performance comparison of static tile/data split and dynamic
load balancing for eqRASTeR application. Sort-first and sort-last (2D and DB on the
graphs respectively) decomposition modes are considered, however compositing is omit-
ted in order to ignore network overhead.

quickly, performance is only improving when few first nodes are added, and per-
formance of sort-last balanced rendering is particularly bad. The observed be-
havior is explained in the following way: since only rendering time is considered,
not taking into account data management and data loading costs, Equalizer frame-
work tends to shift load to few machines which were able to load more data faster
than the other. These few machines would have most of the data cached in their
RAMs and are spending time performing most of the rendering, being awarded by
load balancer with even more data to render, while the rest of the nodes are busy
updating their caches, resulting in poor overall performance.
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COMPOSITING OPTIMIZATION

Distributed cluster-parallel image compositing, even if only for image assembly
as in sort-first rendering, is fundamentally limited by the network throughput that
bounds the amount of image data that can be exchanged between nodes, as was
shown in the Chapter 4. Hence efficient image analysis, compression and trans-
mission techniques must be considered in this context. The performance aspects
of any optimization has to be carefully studied within the fully functioning render-
ing system in order to understand how these changes affect overall efficiency of
the framework. Furthermore, only generic methods should be considered, when
implemented without prior knowledge about the rendering algorithm, as it is usu-
ally the case when general parallel rendering library is developed.

5.1 Compositing Loop

Slightly simplified execution flow of parallel rendering is presented on Figure 5.1(a).
On every frame, after all of the initialization is done, every renderer sequentially
performs drawing (clear, draw), compositing and synchronization (swap) oper-
ations, where in the simplest case application developer has to implement only
drawing functionality. During the compositing stage (Figure 5.1(b)) several itera-
tion of image compositing and assembly can occur, depending on the compositing
configuration.

Initially pixel information is contained in the Frame Buffer on the GPU (in case
of GPU-based rendering), in the general case, this data has to be read-back, and

59
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transmitted to other nodes, as well as used for in-place compositing. Some data
processing and possibly compression can occur on the GPU itself (denoted on the
Figure 5.1(b) as Processing 1), where inherent parallelism of GPUs is exploited.
Certain information is then Read-Back to the main memory, possibly processed
in the RAM (Processing 2), compressed and sent over the network. The same
node would simultaneously receive already processed data from other nodes (Get
Data), decompress and use it for compositing (Compose). Since compositing can
happen both on GPU and CPU, the composited data will end up either in the RAM
or in the VRAM again, after which the compositing loop is closed, and the whole
process can be repeated again.
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Figure 5.1: Simplified execution flow of parallel rendering (a) and compositing loop of
Equalizer framework (b).

There is limited room for optimization, with additional constrains of strict per-
formance requirements. In case of the unknown general rendering algorithm, very
few assumptions could be made by the parallel rendering framework developer.
Rendered output can be analyzed and some types of image data compression could
be evaluated on the GPU itself, during Processing 1 stage. For example YUV
compression and decompression, presented in the Section 3.4.2 and evaluated in
the Chapter 4, are fully implemented on the GPU. Other compression methods,
like RLE are not ”GPU friendly” due to their linear nature and have to be exe-
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cuted by CPU in the RAM, after the Read-Back is done. The compression itself
has to be lossless or introduce minimum amount of artifacts, especially for the
depth buffer, where compression errors can result in significant artifacts during
compositing stage.

5.2 ROI-based Compositing

Distributed parallel image compositing cost is directly dependent on how much
data has to be sent over the network, which in turn is related to how much screen
space is actively covered. Additionally, read-back and transmission times are also
affected by image color and compression formats.

In the following a generic sparse-image representation approach that can be
used in any sort-first or sort-last parallel rendering configuration, is introduced.
Further data reduction can be gained with image compression. However, this
must meet demanding requirements, as its overhead has to be strictly smaller than
any transmission gainings, which can be difficult to achieve, as explained earlier
in the Chapter 4.

In sort-last rendering, every node potentially renders into the entire frame
buffer. With an increasing number of nodes the set of affected pixels typically
decreases, leaving blank areas that can be omitted for transmission and composit-
ing.

The proposed Region-Of-Interest (ROI) algorithm splits the frame buffer into
parts with active pixels and excluded blank areas. The active ROI is less or equal
to the frame buffer size and depends on how many pixels have actually been gen-
erated. Thus the maximal benefit will be reached when each node renders only to
a compact region in the frame buffer. This assumption largely holds for hierarchi-
cally structured data, which is often used to accelerate culling and rendering.

The ROI algorithm is called when all rendering is finished right before read-
back. Identified subregions are individually treated for Read-Back, Compression
and Transmission (RBCT) as well as compositing, any of which is reused from
the original parallel rendering framework.

5.2.1 ROI Selection

For an efficient RBCT process, there are several desired features that final regions
should exhibit:

• Compact rectangular shape;
• Coverage of all generated pixels in the frame buffer;
• No region overlap;
• Smallest possible area for limited number of regions.
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Since the number of regions must be limited to avoid excessive GPU read-back
requests, the last feature is the most difficult to achieve. The proposed ROI method
reformulates the last criterion as follows: the aim is to exclude as much of the
blank frame buffer area as possible with as little effort as possible. This solution
preserves the other criteria while effectively removing the undesired blank spaces.

GPU

СPU

Calculate per-
block occupancy

Use ROI?

Update
ROI efficiency

Read-back
occupancy mask

Estimate
region split

Readback request
(1 region)

1..n ROIs
readback

YesNo

Figure 5.2: ROI selection algorithm.

ROI selection itself requires time and if its area is not significantly smaller
than the entire frame buffer it may affect performance negatively due to overhead.
The decision whether to use ROIs or not is made dynamically while identifying
blank regions. If the blank area is too small with respect to the frame buffer size,
ROI selection fails and is turned off, delayed for one frame, meaning the whole
screen will be read-back in the next frame. Every consecutive ROI failure causes
an increasing delay to the next ROI estimation up to a certain limit at which ROI
estimation is done at a regular periodic rate. Currently this limit is at 64 frames,
equaling to a few seconds of real-time interaction and minimizing overhead of
failed ROI estimation.

Since rendering framework can request different areas from the same window,
rather than the entire frame buffer, and these viewports can change dynamically
due to automatic load balancing, requested regions have to be tracked within ROI
method in order to update ROI efficiency correctly. Proposed method solves re-
gion tracking problem by storing information about all requested regions from
previous frame. When read-back requests are passed to the ROI algorithm for a
new frame, it compares first areas of these new requests to the once that are al-
ready available. If overlap of the new and one of the previously defined regions
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exceeds 2/3 of the old region’s area, the match considered to be positive, new area
replaces the matched one and inherits its ROI performance statistics. If no proper
match is found, the area considered to be completely new and ROI algorithm is
executed without the use of performance statistics.

The algorithm itself consists of two main parts: per-block occupancy calcula-
tion performed on the GPU and region split estimation executed on the CPU as
indicated in Figure 5.2.

To speed up the region split process, a block-based occupancy mask is used.
This mask is computed using a fragment shader on the GPU. It provides a flag
for each grid block indicating whether it contains rendered pixels or not. For
ROI selection, the reduced-size bitmask is transferred to the main memory. On
the CPU a block-based region split is computed aligning the ROIs to the regular
grid blocks. If enabled, the necessary ROIs will then be read back from the GPU
for further compression, transmission and final compositing. Empty areas are
detected using either a specified solid background color or by analyzing z-buffer
values. 16×16 blocks are used for the occupancy mask, which provides a good
trade-off between speed and precision.

The split algorithm is based on recursive region subdivision. Each iteration
consists of two steps: finding the largest rectangular blank area (a hole); and
best split determination based on hole position and size. Figure 5.3 illustrates
the recursive per-block occupancy hole detection and split process. Depending on
a hole position within a region, there are several possible split options. For this
particular hole’s configuration, there are two ways to obtain rectangular sub-areas
that do not include the hole itself but only the rest of the image, one of these is
shown in each subsequent step.

?

?

?

Figure 5.3: Recursive largest hole detection and subtraction for recursive ROI selection.

5.2.2 Empty Space Search

Identifying the largest unused rectangular region within the block-based occu-
pancy mask is efficiently performed using a summed area table (SAT). The oc-



64 5 COMPOSITING OPTIMIZATION

cupancy map is transformed into a SAT with entries indicating the number of
empty blocks up to the given index. Thus emptiness of any rectangular region can
quickly be verified by four SAT lookups and comparison to the block size of the
region.

A maximal empty-area search algorithm is defined as a sequence of requests
to the SAT, and executed in the following way over the block-based occupancy
map SAT:

1. Search in scan-line order bottom-up for empty blocks.
2. In each step, find the intermediate largest hole, a rectangular hole that in-

cludes the current block and is bounded by the upper right corner of the
map.

3. Update the current largest hole if the new one is bigger.

The intermediate largest hole search in Step 2 is based on a three-fold region
growing strategy as shown in Figure 5.4. The strategy is to first grow an empty
square region diagonally, followed by growing a tall empty rectangle vertically
with subsequently reduced width on every empty-region test failure. The same
is then performed analogously horizontally. In each growth step an empty-region
test corresponds to a query of the SAT occupancy map.

1

1

2 2 2

3

3 3

4

Figure 5.4: Largest hole searching first proceeding diagonally upwards (1), then verti-
cally with decreasing width (2) and last horizontally with decreasing height (3). Eventu-
ally the largest hole found (4) is reported.

To avoid identifying too small empty areas, the hole search procedure is ter-
minated if either a minimal absolute or relative empty region size threshold is
reached. In that case a zero-sized hole is reported to avoid further recursion.
These values can be set to quite high values (e.g., 200 blocks and 2%) and still
give acceptable cuts.
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5.2.3 Split Estimation

A region split is executed once after the largest hole in a current frame buffer
region has been found. There are four categories of hole positions as shown in
Figure 5.5, of which only the first one leads to a simple split into two new vertical
or horizontal rectangular regions.

(a) (b) (c) (d)

Figure 5.5: Different categories of hole positions: (a) through, (b) corner, (c) side and
(d) center.

The symmetry classes of possible region splits are shown in Figure 5.6. For a
corner hole only two variants are possible, with one either vertical or horizontal
line aligned to one of the hole’s edges. A side hole has four different options, and
a center hole has two unique configurations as well as four, which reduce it to a
side hole.

To find the best split, the algorithm maximizes the area that can be removed
in the next subdivision. That is, a hole search is performed for the subregions
of every possible split and the accumulated size of all holes is considered. For
the best split the determined hole positions are forwarded to the recursive split
processes for each subregion.

x4

Figure 5.6: Symmetry categories of region splits.

In order to avoid excessive and repeated hole searches, information from com-
mon subregions is shared. There is a maximum of 16 different subregions that
have to be checked depending on the hole position, as depicted in Figure 5.7. For
corner and side holes, disappearing subregions are considered to have a zero hole
area.

Figure 5.13 demonstrates examples of the ROI algorithm results. Rectangle
areas are final regions after ROI algorithm is finished, where hashed areas are not
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Figure 5.7: Different subregions for split calculation.

read back to the RAM at all. On the right-bottom image it could be seen that ROI
can’t reduce any space and therefore disabled; the whole window is read back in
this case.

5.3 Performance Evaluation

Performance of the ROI algorithm was evaluated using the same setup and data
sets that were described earlier in the Chapter 4. David Head, David 1mm and
who different setups fly-around and fly-through for Power Plant model were used
with eqPly, as well as Turn and Zoom paths for 32K×32K SRTM terrain data
rendered with eqRASTeR application. Additional fly-over setup with a smaller
Puget Sound model for eqRASTeR is evaluated in order to demonstrate per-frame
ROI performance in detail.

ROI compression According to the Chapter 4 it can be concluded that for
sort-last rendering the efficient encoding of the sparse image data is important,
i.e. removal of blank pixel data. Furthermore, the experiments on sort-first ren-
dering have shown that for large non-uniform color regions YUV subsampling
and optionally swizzle RLE coding achieve significant improvements in image
throughput. In the following the influence of proposed ROI selection algorithm
is evaluated. Serial compositing up to 5 nodes and afterwards Direct Send (DS)
compositing is used as a reference point, when ROI is executed in serial fashion
only. RLE compression used for simple tests, and RLE per-component for ROI
tests (since blank areas are already excluded).

Figure 5.8 shows that the ROI algorithm clearly outperforms RLE for empty
pixel removal. Despite the additional cost to detect ROIs (from 0.79ms to 2.5ms
for 1280× 1024) and splitting an image into multiple regions, the ROI selec-
tion method quickly and effectively identifies and removes blank frame buffer
areas. Figure 5.9 further highlights advantages of the ROI method, featuring rel-
ative speedup that was achieved for different scenarios and data compression. In
Figure 5.9(a) RLE and YUV compression methods are compared with and with-
out ROI enabled, while Figure 5.9(b) demonstrates that due to combination of
ROI and YUV subsampling significant speedups can be achieved over pure RLE
method. The decrease of frame rates is due to the fundamental image throughput
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Figure 5.8: Effect of the ROI method on image throughput: (a) David Head, (b) Power
Plant (fly-around) and (c) Power Plant (fly-through) model; ROI selection impact on sort-
first (2D) as well as sort-last (DB) serial and Direct Send compositing modes (d).

limits outlined at earlier.

Even better improvement is achieved in eqRASTeR, when ROI is used. Fig-
ure 5.10 shows comparison of eqRASTeR performance with and without ROI
enabled. It can be seen that for sort-first setup (2D ROI and 2D No ROI) the
performance is the same. Since vertical screen tiles are fully covered with im-
age data, ROI is not able to find any empty regions and therefore is automatically
disabled (it is clear from the results that ROI doesn’t introduce any overhead in
this case). Further, sort-last rendering with serial and DS compositing methods
without ROI detection (DB No ROI and DS No ROI) are compared to serial
ROI-enabled compositing (DB ROI). Presented results show that, while overall
sort-last performance is still limited at around 12 fps due to network saturation,
ROI method significantly outperform non-ROI compositing.
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Figure 5.9: Relative speedup of ROI algorithm compared to the same methods without
ROI enabled (a); combined ROI + YUV speedup compared to RLE compression only (b).

ROI scalability Without optimization of the image throughput, scalability is
quickly limited due to the distributed image compositing stage, i.e. network trans-
mission as reported in [Eilemann et al., 2009]. The positive impact of ROI selec-
tion on the compositing stage is demonstrated below. Experiments are conducted
with the large David 1mm model displayed horizontally. For sort-first rendering
the screen was divided into N equal vertical tiles, for sort-last the data is split into
N equal chunks.

In Figure 5.8(d) the theoretically possible performance is indicated with Ren-
dering only for sort-first (2D) and sort-last rendering (DB), without accounting
for any image transmission and compositing. The actually achieved frame rates of
sort-last rendering are shown for Serial and Direct Send compositing. Superlin-
ear performance of rendering can be explained by caching effects in main memory
and GPU. The negative performance impact of the limited image throughput is ob-
vious as the speedup quickly approaches the expected frame rates and flattens out.
In contrast, the ROI enhanced sort-last rendering keeps up scalability much longer
and performs superlinearly up to the maximum number of nodes tested.

While sort-first rendering in general shows less impact due to image through-
put limits than sort-last methods for large complex 3D data, ROI enhanced sort-
last rendering nevertheless outperforms it considerably.

Per-frame ROI Performance It is clear that ROI optimization is more
efficient when the occupied screen area is smaller, the following two graphs will
show how much performance per-frame can be gained exactly.

Figure 5.11 illustrates per-frame timings of the serial 6-to-1 sort-last composit-
ing. These results correspond to the data points for 6 nodes on the Figure 5.10(a),
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Figure 5.10: Performance results of eqRASTeR application with and without ROI opti-
mization enabled.

where average frame rate of 5.7 fps and 11.8 fps is archived by DB No ROI and
DB ROI accordingly (the small difference in the average timings compared to the
Figure 5.11 is due to the time measurement error since these tests were performed
at different time).

The amount of the in-place data, rendered by the destination window is shown
below the graph (white digits in the lower-left corners represent number of pixels
relative to the whole frame), where white space corresponds to the composited
area (with black digits in the upper-right corners). Due to camera movement the
ratio of in-place to composited pixels slowly changes, this result in slight increase
in overall ROI performance (Linear(DB ROI)), since less data has to be pro-
cessed, on the contrary, the performance of the non-optimized version stays the
same (Linear(DB No ROI)).

To demonstrate the influence of ROI even better, another experiment with dif-
ferent camera path and smaller dataset was conducted. Puget Sound (PS) model
and much faster camera motion were used. This experiment was evaluated using
only 4 nodes in order to visualize corresponding data regions better. Figure 5.12
contains the findings.

The chart features per-frame performance of eqRASTeR with and without ROI
method enabled (DB ROI (FPS) and DB No ROI (FPS)), as well as number of
composited pixels (% of new pixels)). First row of the screenshots below the
chart, displays data distribution between different renderers; colors red, green,
blue and pink correspond to 4 different contributing pixel sources, where the red
color is assigned to the data rendered on the destination channel itself (the numeri-
cal amounts of in-place information are additionally given in the lower-left corners
and the amounts of composited information in the upper-right corners, similar to
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Figure 5.11: Per-frame performance of ROI algorithm. The screenshots below the chart
are featuring screen area space that was drown by the destination channel (white num-
bers), white space correspond to composited area, rendered by 5 other channels (black
numbers).

the Figure 5.11). Second row of the screenshots features complete frames as they
appear on the destination viewport after compositing.

First, second and fourth screenshots correspond to, around, 70 percent of the
in-place data where only 13 to 15 percent of the screen is read-back, sent over the
network and finally composited, hence the high frame rate of 28 to 32 fps for these
frames. The third screenshot correspond to a global maximum of 75 percent of
the screen of composited information. The overall frame-drop appear with a small
delay as expected, when the amount of composited information reduces again, the
frame rate increases back to almost 30 fps. At the same time the performance of
non-optimized version (DB No ROI (FPS)) is nearly a constant for the whole
sequence.

It has to be noted, that during frames 150 to 300, large portions of the data be-
ing loaded by all renderers, due to significant change of the camera position, which
lead to significant change in the rendering set selection and therefore significant
changes in data-range assignments. Nevertheless the optimized version of the
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Figure 5.12: Per-frame performance evaluation of a Puget Sound data set. Screenshots
are featuring different data sources as well as final images after compositing.

compositing algorithm outperforms non-optimized version at all times, providing
up to 4 times frame rate increase in the best case.
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Figure 5.13: Examples of results of the ROI algorithm (rectangular areas are read back
separately, where hashed areas are not copied to RAM at all).



6C H A P T E R

DATA MANAGEMENT AND LARGE
VOLUMES RENDERING SYSTEM

Equalizer parallel rendering framework in its current state, provides a great deal
of compositing and synchronization support. Several methods for data synchro-
nization and exchange are also available, however application developer is still
forced to invest significant amount of time in creating of parallel out-of-core ren-
dering solutions due to missing data management layer. Out-of-core methods
exploit similar strategies that are widely used in general-purpose computation op-
timizations, namely two level cache, these methods should be introduced to the
framework to make application development easier.

6.1 System Overview

Equalizer framework provides basic implementations of the entire parallel ren-
dering application, where an application developer can extend default behavior
if needed. Figure 6.1 (a) shows the most important classes of the framework
that application developer has to deal with (they belong to the eq:: namespace).
eq::Client and eq::Server are used to run application and handle configuration
tasks (parsing of configuration files by server, starting of the applications, and
calling rendering, compositing and synchronization commands). Further classes
represent resources of the rendering system: eq::Node correspond to a single
computer; eq::Pipe is an abstraction layer for GPUs; eq::Window responsible

73
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for windows; and, finally, eq::Channel represents viewports within a window.
eq::Pipe and eq::Window provide necessary interfaces for multi-platform execu-
tion (Equalizer runs on Windows, Linux and Mac OS), hiding system specific
code from the user. If new windowing system has to be introduced, mainly these
two classes have to be adjusted.

Since this structure is mapped to actual resources, it has similar properties:
one configuration can have many Nodes (computers), each node can have multiple
Pipes (GPUs), where each GPU can host multiple Windows, and rendering would
happen within several Channels (viewports) of each window.
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Figure 6.1: Basic classes of sample applications (b) with corresponding Equalizer classes
(a); data management functionality (c) and its application specific implementation (d).

Creating of a parallel rendering application with Equalizer can be as easy as
subclassing eq::Channel class and overriding its frameDraw() function only, the
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default implementation of the framework will take care of the rest. This, however,
allows very little flexibility in the way the data can be managed. If any type of data
sharing is required, further overriding of build-in functionality is necessary. For
example, in order to share data between windows of the same GPU, eq::Pipe class
has to be subclassed and modified; when rendering parameters should be changed
during OpenGL context initialization - eq::Window class and its configInitGL()
function needs to be overridden; further, when some information has to be cached
in the RAM and be accessible to multiple GPUs - eq::Node would be the right
place to look at.

Generally, any default behavior of Equalizer can be extended or replaced with
custom implementations; for instance, eVolve volume rendering example over-
rides compositing functionality of eq::Channel to achieve custom back-to-front α-
blending based image compositing; eqRASTeR extends eq::Pipe and eq::Window
with additional hidden window that shares context of current GPU in order to per-
form asynchronous data loading to this GPU. The according classes that most
often are subclassed by applications are presented on the Figure 6.1 (b).

There is a number of additional classes (they are not described in detail here)
that are used for data synchronization between nodes, and suppose to help with
data management, while the generic caching and data to GPU uploading mecha-
nisms are still missing. The presented, in the following, system is build upon stan-
dard Equalizer functionality and is designed to help with creation of distributed
out-of-core rendering solutions.

6.2 Data Management

The focus of proposed system is on interactive large data visualization. When the
whole data, even after distribution between nodes, can’t be fitted into the RAM
or VRAM, out-of-core methods are required. There are two basic strategies to
render large data: split data into parts and render one part after another, until
the whole data is rendered, or create level of detail structure and for each frame
estimate appropriate levels of detail based on the camera position and the number
of resources available. Although being more complicated, only the second method
can provide interactive rendering performance, where time spent on a single frame
is fixed, meaning that the amount of information rendered per frame has to be
limited as well.

In the following it is assumed that the data is initially stored outside of the
rendering cluster’s RAM (it can be hard drives of the cluster, external NAS, or
even memory of a separate supercomputer that runs a simulation, which has to be
visualized), and that rendering is performed on a small GPU based cluster (recent
reports [Suss et al., 2010; Howison et al., 2010; Makhinya et al., 2010] suggest
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that this type of setup is the most suitable for interactive visualization in terms of
overall rendering performance).

Naturally, the data, being visualized, has to appear in the VRAM; since it is
common that amount of RAM greatly exceeds amount of VRAM, a two level
cache can be constructed. An example of such caching system is presented on
the Figure 6.2. Initially the data (DATA) is stored outside of RAM and VRAM
(RAM CACHE and GPU CACHE); in the beginning of each frame, algorithm
responsible for LOD computation (Model) evaluates parameters of the camera,
available rendering time and VRAM size, and requests from the GPU Manager
appropriate portions of information to be loaded to the VRAM. At this point of
time Model doesn’t know whether portions of the data were uploaded to the GPU
already or not, it is task of the GPU Manager to figure out what data blocks is
already on the GPU, which blocks are not, and what portion of information has
to be replaced on the GPU in case there is not enough space. Once the missing
blocks are determined, a list of requests is sent to the GPU Loader which is a
separate process running in parallel. GPU Loader requests data blocks from the
RAM manager (RAM Pool) and if the data is available in the RAM, GPU Loader
uploads the data to the GPU Cache. In case when requested information is not in
the RAM, RAM Pool sends loading requests to RAM Loader which is responsible
for loading of the data from external source to the RAM and is implemented as a
separate process that runs asynchronously as well.

DATA
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RAM Pool
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Figure 6.2: Overview of data flow, and management.

Since there could be multiple GPUs in the system it is necessary to have mul-
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tiple GPU loaders each of which shares OpenGL context of one GPU, also the
number of GPU Managers and Models has to be adjusted accordingly, to reduce
overheads when rendering is done in parallel on multiple GPUs. The number of
RAM Loaders can be arbitrary, depending on the external storage characteristics,
since it make sense to maintain only single RAM Pool so that the data in the RAM
could be shared between GPU Loaders.

The roles of different parts are summarized in the following:

Model
• Maintains hierarchical data structure representation;

• Estimates LOD selection;

• Renders data.

GPU Manager
• Maintains state of a single GPU data cache;

• Provides GPU’s data accessibility information to the Model;

• Communicates with a single GPU loader.

RAM Pool
• Maintains state of the RAM data cache;

• Maintains queues for the data requested by GPU Loaders;

• Makes sure data is loaded only once if it is required by multiple GPUs.

RAM Loader
• Reads loading requests stored in the RAM Pool;

• Asynchronously fetches data from the Data storage to the RAM Pool.

GPU Loader
• Asynchronously fetches data from the RAM Pool to the GPU memory;

• Maintains queues for requested by GPU Manager data;

• Communicates with the RAM Pool.

The mapping of the proposed cache structure to the Equalizer’s class hier-
archy is presented on the Figure 6.1 (c). dm::RAMPool is initialized from the
eqApp::Node class, since it has to be shared among GPUs; dm::RAMPool ini-
tializes as many dm::RAMLoaders as necessary; where dm::RAMLoaders are
sharing dm::DataIO that is responsible for reading of particular data types and
is also initialized once for each eqApp::Node. Each eqApp::Node creates as
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many eqApp::Pipes as required by the configuration, consequently, creating one
dm::GPUManager, dm::GPULoader and dm::Model per GPU.

In order to implement application specific behavior several classes have to be
subclassed and extended, these classes are shown on Figure 6.1 (d). For example,
eqApp::DataIOHDDOctree and eqApp::DataIOHDDRaw are implementing data
read and write functionality for two different volume formats; eqApp::GPULoa-
der::run() implements particular data format to GPU uploading; eqApp::GPUMa-
nager can be used to change GPU memory allocation and data uploading strate-
gies; eqApp::Model contains application specific LOD selection functionality and
managing different rendering techniques through eqApp::Render.

Figure 6.3 illustrates data loading and caching algorithms and related auxil-
iary data structures that are used to implement fully asynchronous DATA to RAM
CACHE and RAM CACHE to GPU CACHE data loading. Current state of the
GPU CACHE is maintained by the GPU Manager in the GPU Info, and the state
of RAM CACHE is handled by RAM Pool with RAM Info structure accordingly.
Asynchronous behavior is achieved by maintaining several queues for exchang-
ing with commands, requests and replies, which are periodically checked by their
owners. Two queues are maintained by GPU Loader: GPU Loading Queue,
where GPU Manager writes loading requests to and GPU Loader reads and pro-
cesses them, and GPU Respond Queue, through which GPU Loader informs GPU
Manager about successful loadings to GPU CACHE. Based on the information re-
ceived through GPU Respond Queue, GPU Manager updates GPU Info structure
to maintain current status of VRAM.

Separate RAM Loading Queue is maintained by RAM Pool for each GPU
Loader, this way request from each GPU Manager and GPU Loader can be han-
dled independently. When a request for DATA to RAM Cache loading is coming
from GPU Loader, it is associated with an appropriate queue based on the unique
identifier of the GPU Loader or new queue is created on a very first request, this
way it is possible, for example, to easily cancel requests of different GPUs without
affecting performance of other rendering units running in parallel.

RAM Loading Queues are checked periodically by RAM Loaders and available
requests are handled. It is responsibility of the RAM Pool to provide appropriate
memory slot, based on Least Recently Used (LRU) statistics, when new data is
loaded from an external source, and to make sure that there is only one copy of
every data block in the RAM. The uniqueness of the loaded memory blocks is
important since multiple GPUs can request the identical information at the same
time through different RAM Loading Queues (or a request can be potentially du-
plicated in the same queue) and multiple RAM Loaders can try to execute those
requests in parallel as well.
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Figure 6.3: Data management algorithms and communications.
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During rendering of a new frame eqApp::Channel (Figure 6.1) calls dm::Mo-
del::render(...) function, providing camera and viewport parameters, Model com-
putes new set of data blocks, based on the data availability provided by GPU
Manager through GPU Info (Figure 6.3), then calling dm::GPUManager::up-
dateFront(...), which updates GPU Info, computes and submits requests to GPU
Loader, after which Model can proceed immediately with rendering of avail-
able data (Render Available Data) based on the updated information, while GPU
Loader and RAM Loaders are fetching missing data blocks in the background. If
viewport coherency is maintained there is a very high chance of previously re-
quested data being needed again over several frames, therefore after possibly few
frames of the delay, newly uploaded data can be used by the Model.

Although only data fetching from HDD is implemented at the moment, the
system can be generalized to the shared memory setup (similarly to the method
proposed by [Castanie et al., 2006]), through extending of the RAM Loader’s or
data input (dm::DataIO) functionality. Shared memory is such case means that
data blocks are shared between nodes, and when a data block was loaded from a
slow source once, it can be copied to other computers much faster directly from
node to node, without involving slow storage. This however assumes maintaining
of a global data block availability cache or broadcasting data loading requests to
other nodes, either way increasing intra-node communication.

6.3 Volume Rendering System

Interactive rendering of very large volume data sets become extremely popular
demand nowadays. It is common to obtain tens and even hundreds of gigabytes
of volume data from a single CT scan; these amounts of information can’t be
interactively visualized directly, and usually require offline preprocessing and out-
of-core rendering techniques. In order to demonstrate functionality and apply it
to solving of a real world problems, the proposed data management system was
used to build an out-of-core parallel volume visualization application.

6.3.1 Data Import

Medical data is usually produced as a set of independent scans, each residing in its
own file (typically in a DICOM file format). This set of files has to be converted
into an appropriate format for efficient out-of-core visualization, which means
that a set of levels of detail has to be created for faster data loading and interactive
visualization.

Currently, a data set of 2600×1600×5196 voxels, occupying about 42GB of
disk space was tested with the proposed system. Figure 6.4 illustrates the volume
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data processing chain. A set of DICOM files was converted to the RAW data
representation during the first step. RAW data is then aligned with a regular grid
and split into smaller cubes (643), this creates a lowest level of the octree (Level N
on the Figure 6.4), where each block is numbered and can be loaded independently
by the data management system. The final size of this lowest level is chosen in
such a way that the number of cubes in each direction is equal to the next largest
power of 2 number and, in general case, final size is larger than the size of original
data, however empty blocks are only used in the further data reduction step and
are not stored on the HDD.

DICOM
(16 bit)

RAW
(8/16 bit)

Octree
(8/16 bit)

Level N

Level 2Level 1

...

Level 3
Figure 6.4: Volume data preprocessing, where original DICOM image files are converted
into an octree representation for efficient loading and LOD-based visualization.

On every next step a higher level of the octree is created by averaging every
eight neighboring blocks of a previous level. Since the number of blocks in each
direction is equal and is a power of two number, in the end such data reduction
produces a single block (Level 1), which is a rough representation of the whole
dataset and is associated with a root of the octree data structure.

The whole process of data reduction is additionally visualized on the Fig-
ure 6.5, using real data. Initially a set of DICOM files can be viewed slice by slice
only: Figure 6.5 (a) demonstrates one of the 5196 slices of 2600×1600 px res-
olution, painted with pseudo-colors; then separate blocks of the original data are
extracted: Figures 6.5 (c) and (d) correspond to two blocks of the lowest octree
level, and contain original data before reduction. Finally after the octree hierarchy
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*
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* **
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**
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Figure 6.5: DICOM datasets viewer (a) featuring one scanned slice of 2600×1600px
resolution, with the renderings of two corresponding data blocks (c, d), and renderings
of full data-set with two different data values interpretations (different transfer-functions)
(b, e). Additionally, characters ”*” and ”**” are showing locations of corresponding
data blocks (c) and (d) in the original DICOM data (a) and full data-set (b).

is created, a top level block can be used to visualize the data on the coarsest level
of detail: Figures 6.5 (b) and (e) represent rendering of the same Level 1 block
using two different interpretations of the volume values (two different transfer
functions).

6.3.2 Rendering

Once the data was transformed into an octree representation, it is possible to visu-
alize any part of the volume with any available quality, including original values,
by rendering individual blocks in the correct order. The octree has to be traversed



6.3 Volume Rendering System 83

according to camera parameters and appropriate blocks have to be scheduled for
loading and rendering afterwards.

The main idea of brick-based volume rendering, presented here, is similar to
the one used in eVolve: blocks have to be rendered in back to front or front to
back order, the main differences from the approach used in eVolve is that the
octree is split in three dimensions, rather than in one and that neighboring blocks
can have different scaling factors, depending on the tree level. Once the order is
established, each block can be rendered using the same rendering algorithm, that
was used in eVolve, called for each block sequentially.

GPU memory handling Numerous blocks have to be cached in the VRAM
and rendered during each frame, therefore efficient GPU memory allocation strat-
egy has to be used. In the presented application, a single 3D texture memory cache
is created. Multiple blocks are stored within this single texture simultaneously;
when the system runs out of memory, some parts of this texture are overwritten
with new blocks of data, therefore VRAM memory management is greatly simpli-
fied since data unloading doesn’t have to do anything at all, and only one OpenGL
texture is used during the whole rendering process. The GPU Manager is deal-
ing with the mapping of data blocks in the GPU CACHE, providing necessary
information about blocs’ location to the Model during rendering.

Octree traversal and compositing For each frame octree is traversed
by the Model twice. First time when it computes what is a desired data to render,
before passing these requests to the GPU Manager, and the second time during
actual rendering of available blocks.

During the first pass Model us memory budget, performance budget and qual-
ity requirements to evaluate which blocks have to be rendered, based on this in-
formation octree traversal order and levels of detail are established.

At each traversal step it is decided whether child link of the octree has to be
followed or not, which means all children of the current node will be rendered
instead of this node. The traversal continues if the following conditions are met:
there is enough time to render all children, desired levels of detail for current node
is not yet reached, and all children are already in the VRAM. In case when there is
enough time, but children are not available for immediate rendering, Model forms
a request to the GPU Manager for loading of the missing data. The traversal also
makes sure that blocks, which are in front are traversed first and have at least the
same quality with those, which are behind.

The traversal starts at the highest tree level, consequently deciding whether
further traversal has to be done. At the each node that has to be traversed, an order
of child blocks is established based on the normals associated with the octree and a



84 6 DATA MANAGEMENT AND LARGE VOLUMES RENDERING SYSTEM

vector that connects center of the camera and center of the block that is associated
with currently traversed node.

The process of establishing visibility and traversal order is illustrated on the
Figure 6.6. Figure 6.6 (a) represents two levels of hierarchy traversal, where cor-
responding to this octree structure blocks of data are shown on the Figure 6.6
(b); the camera position is denoted as O and centers of the whole hierarchy and
divided parent as O0 and O1 accordingly.
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Figure 6.6: Octree volume hierarchy (a) with corresponding volume data blocks (b) and
traversal sequence (c).

There are seven parent nodes named A, B, C, D, M, N, O, and eight children
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on the eight’s parent E..L. The traversal starts from the top level, where an angle
between OO0 and X vectors is analyzed, based on the result the volume is split
into two parts by the plane O0Y Z, where blocks on either side are considered to
be in front or in the back, Figure 6.6 (c) (Step 1) shows this split after the first
iteration. During the second step an angle between the vectors OO0 and Y is
checked, depending on the result a plane O0XZ divides each leaf into two parts
again (Figure 6.6 (c), Step 2). In case of front to back traversal, after this step, it is
possible to say already that nodesB andM are in front, followed by nodesAE..L,
followed by D and O, and finally concluding with C and N . After the third
step, where angle between vectors OO0 and Z is computed, the top level of the
hierarchy is fully evaluated; next, the procedure have to be repeated for children
nodes, using vectors OO1 and X , Y and Z accordingly. In total, for the given
example, after six comparisons of the appropriate angles, it is possible to build
the whole visibility tree hierarchy; traversing this tree from left to right, counting
only leafs, gives front to back order of the blocks: MBJFIELHKGAODNC,
and from right to left gives the back to front compositing sequence.

Levels of detail selection The levels of detail are selected based on time,
memory space and quality requirements. The number of blocks to render depends
on the average time spent during previous frame on all rendered blocks. This way
it is possible to limit number of blocks in order to achieve required frame rate.
Number of blocks is additionally limited by the available GPU memory, however
on modern GPUs the amount of memory is usually a less significant constrain
comparing to rendering time. Finally, the quality aspect is taken into account, by
projecting of the bounding sphere of each block on to the screen and comparing
the resolution of the block to the size of the projection. In case of perspective
projection the size of the bounding sphere in the screen coordinates will depend
on the distance of this sphere to the screen, therefore further away blocks can
be visualized using coarser octree level, while maintaining the same per-pixel
rasterization quality.

Two examples of such octree traversal and LOD selection are presented on
the Figure 6.7. Depending on the camera position two different set of blocks are
selected based on the distance to the screen and projected area.

6.3.3 Graphical User Interface

At the moment Equalizer doesn’t provide any user interface out of the box, except
for creating OpenGL windows, which limits the GUI experience significantly.
Event though it is possible to extend Equalizer to support any windowing system
(as it is already done for supporting GLUT-based windowing on various operating
systems), integrating of advanced windowing toolkits, such as QT currently has
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Figure 6.7: Two different levels of detail selection of the same octree from two different
points of view. Depending on the camera position LOD selection can significantly vary,
which requires new data to be constantly fetched in the background for every significant
change of the viewing parameters.

some issues. Equalizer is already managing rendering loop, events handling and
OpenGL context sharing, while QT framework has its own events processing loop,
and straightforward integration causes overheads and OpengGL context conflicts.
Solving these problems would require structural changes to the main rendering
loop of Equalizer. Hopefully the framework will be extended to fully support QT
soon, in the meantime less invasive approach to complete existing applications
with a GUI was implemented.

A separate GUI application based on the EQ networking layer is created. It
provides GUI features for file selection and TF editing for the volume rendering
application by connecting to a running Equalizer process and exchanging user
commands. This approach require minimum changes to existing applications and
this type of GUI can be run from a separate device and be connected to any ap-
plication remotely. Integration of existing GUI widgets is reasonably simple, Fig-
ure 6.8 features main dialog, connection widget and TF editing widget1 of the
volume renderer.

Two examples of interactive TF editing results are presented on the Figure 6.9,
where two different values interpretation result in two different rendering out-
comes for the same dataset.

1TF editing widget is a part of IVS volume visualization system developed at the Visualization
and Multimedia Lab of the University of Zurich by Philipp Schlegel.
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Figure 6.8: Screenshots of the integrated Transfer Function editor. Provided GUI allows
connection to a running Equalizer application and modifying of rendering parameters in
real-time.

Figure 6.9: Editing of rendering parameters in real-time is important for interactive
data exploration. These two examples of different values interpretations illustrate two
different visualization results of the same data. Boxes below the images show graphical
representation of mapped colors in the GUI editor and corresponding textures on the GPU
used for coloring the data.
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6.3.4 Results

Data Processing Proposed out-of-core volume visualization application op-
erates on equally sized blocks of the octree hierarchy, and requires that the input
data is preprocessed and individual blocks are stored as continues portions of data
within a file for efficient loading. The initial DICOM images are converted to a
8bit raw format resulting in a single 21GB file, which is then used to create blocks
for the octree. Octree data preprocessing is performed according to the following
stages:

1. Storage space is allocated for the entire octree hierarchy;

2. Original data blocks that correspond to the Level N on the Figure 6.4 are
then extracted and saved as continues portions of data;

3. Using blocks obtained on the step 2. the children nodes of the N-1 Level are
created;

4. Reduction is repeated until Level 1 (root of the octree hierarchy) is not ob-
tained.

Performance results of the data preprocessing are demonstrated on the Fig-
ure 6.10, where time is compared to simple copying of data of the same size. As
could be seen from this graph, preprocessing doesn’t introduce a significant over-
head, taking also into account that it has to be done only once before the actual
rendering.

Data Loading The performance of the data fetching is only limited by the
data storage reading performance itself. Using local HDD as the data source,
proposed system was able to achieve around 140MB/s in a test where 250MB
of data (1000 blocks of 256 KB each) was loaded to the GPU, which is close to
the limits of the HDD reading speed.

In the second experiment the same data was located on a remote storage device
with slow network connection. This test was performed in the following way:
available GPU memory was restricted to 250MB and two portions of 1000 blocks
of 256 KB each was uploaded to the GPU sequentially. Since only 1000 blocks
would fit to the GPU, the entire VRAM was rewritten twice, every time with the
new data; it took around 38 seconds to deliver this data to the GPU cache from
the slow data source. The test was then executed again, this time both portions of
the data were uploaded to the GPU twice in the following sequence: first 1000 of
blocks; second 1000 of blocks; first 1000 again; second 1000 for the second time.
In this scenario the content of the VRAM was replaced four times. Without RAM
cache such data access would result in doubling of the loading time, however it
took only 39 seconds for the proposed system to fetch the whole sequence, since
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fast RAM cache was used instead of the original storage whenever a block was
requested for the second time.

These two experiments confirm that the management layer doesn’t introduce
any significant overhead and can be efficiently used for caching with slower data
sources.
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Figure 6.10: Time required for full octree creation is compared to the time required to
copy the original 21GB file. Data processing performance mostly depends on the storage
performance, which is demonstrated by using two different data sources: ordinary HDD
and fast SSD.

Rendering Performance Out-of-core rendering has an advantage over in-
core, single model rendering in case when more data than fits to the VRAM or
even RAM has to be visualized, however the algorithm usually has to work with
more rendering primitives since the data is rendered in small portions. More CPU
resources are used to estimate the relationships between data parts, order of ren-
dering and parameters of each rendered primitive.

The impact of using multiple bricks to visualize a single model was studies for
the proposed volume rendering application in the following way: a 5123 model
that fits entirely on the GPU was rendered using a single 5123 cube of data for
1000 frames; same model was converted into an octree, consisting of 512 children
nodes (585 nodes in total) of 643 brick each, and all children nodes were ren-
dered for 1000 frames as well, using the same quality settings. The average frame
rate for single model resulted in 8.02 fps, where for bricked data it was 6.74 fps.
The overhead is noticeable here since LOD was turned off and no parent nodes
were allowed, resulting in rendering of all 512 blocks; the correct sequence of
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rendering had to be estimated and extra computation for setting correct per-block
rasterization parameters had to be done.

In the second part of the experiment LOD was switched on, and tuned to pro-
vide similar visual quality, but allowing parent nodes to be used, resulting in 288
blocks of 643 rendered per frame on average and running at 9.44 fps.

Performed tests show how flexible rendering using hierarchical data represen-
tations can be. In the provided examples the time spent on rendering was not taken
into account by LOD selection and only quality being a limiting factor, however
in interactive visualization minimum frame rate restriction is a very important pa-
rameter, which could be adjusted by LOD selection on multiple bricks with better
granularity and in more flexible ways that can be achieved without hierarchical
data representation.

Visual Results Figure 6.11 illustrates final volume visualization. Red wire-
like boxes outline data blocks used for rendering. Depending on the resolution
and rendering budget different number of blocks from different octree levels is
selected, resulting in different quality to performance ratio. Rendering speed can
additionally vary depending on the rasterization quality of each block, and not
studied in the detail here, more importantly, proposed asynchronous data loading
doesn’t introduce any overhead to the rendering itself, where initial data fetching
only depends on the data storage performance.
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Figure 6.11: Examples of different LOD selection depending on resolution and rendering
budget requirements. Wire-like boxes outline individually rendered data blocks of the
octree.





7C H A P T E R

CONCLUSIONS

7.1 Summary

The initial porting of a stand-alone application to a general-purpose parallel ren-
dering framework is relatively straightforward. In particular, sort-first and display
wall types of rendering setups can be achieved easily. The algorithm has to be only
extended in order to include the new view-frustum matrices and the windowing
system. The sort-last decomposition, however, requires rather significant changes
to the initial rendering method. Efficient data range mapping is one specific diffi-
culty. Data synchronization across nodes and, in some cases, correct compositing
require additional effort from the application developer. Overall, there are still
too many aspects of parallel rendering system that have to be taken into account.
A good trade-off between performance and required programming effort on the
application side is an open challenge.

Compositing stage is an important part of any parallel rendering system, where
low network performance is usually the weakest link of the chain. Selection of a
proper compositing algorithm and compression method is essential for the over-
all performance improvement. Lossy data compression has to be used with a
great care, especially in sort-last scenarios, where the boundaries between differ-
ent parts of the model composited from different sources can have arbitrary shape
(not only vertical or horizontal as in sort-first) and therefore reveal cracks in the
compositing easily. Moreover, compression methods have to be extremely fast,
preferably implemented on the GPU, such that compression and decompression
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overheads can be easily covered by gains in transmission performance.
While it is possible to improve compositing speed, even without prior knowl-

edge about the rendering algorithms, few constrains have to be considered by
both, the rendering system and the application developers; for example having
compact screen regions combined with clever ROI technique can improve com-
positing performance considerably. This idea mostly affects the data distribution
and rendering pattern that has to be taken into account by the application devel-
oper.

The evaluation of parallel terrain renderer showed that simple measuring of
time spent on a frame is not sufficient for assessing workload, since it doesn’t
exploit underlying data caching and asynchronous loading mechanisms of the ap-
plication. This type of balancing can only be used if all the data could fit to the
GPU memory or be uploaded to GPU very quickly and is available without any
noticeable delay. It limits the application to small data sets, where algorithm can
benefit from rendering in parallel only if it has high pixel rasterization cost (e.g.,
ray tracing).

For an out-of-core application the best option for better scaling, at the mo-
ment, is to handle load balancing independently; this can be achieved by enabling
static data split in the rendering framework and performing a number of rendered
primitives equalization between nodes, based on a per-frame LOD selection for
the whole data (Figure 4.3). This approach however assumes that all parame-
ters of the rendering resources are similar, this is required for equal data fetching,
caching and rendering performance; in heterogeneous systems proposed approach
would have to be corrected, taking into account rendering power of each resource.

Equalizer provides very flexible configuration and parallel execution of the
application; accessible abstractions for nodes, GPUs, windows and channels are
flexible enough, and several options for handling distributed objects are also avail-
able. This however is not sufficient, other building blocks like proposed asyn-
chronous data fetching and better GUI integration are essential for rapid applica-
tion development.

7.2 Directions for Future Work

Several fundamental issues of parallel rendering on a small visualization cluster
were addressed in this thesis. There are still many problems to solve, due to the
broad nature of the subject, these challenges are summarized in the following:

• Efficient automatic load balancing

At the moment application developer has to adapt data distribution strat-
egy manually for better performance and LB; many aspects of what parallel
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rendering system is doing has to be taken into account as well (for example
minimizing changed screen regions), since direct approach for LB through
measuring only rendering time fails. Thus new strategies for automatic LB
are required, where parallel rendering exploits some better form of a feed-
back from and to the renderer, which contradicts the idea that tight coupling
of parallel system and rendering algorithm is not desired since it reduces
reusability of both parts.

Nevertheless, some general clues can be exchanged between rendering sys-
tem and the application, for example some form of high level data caching
map. In case of sort-last rendering, additional hints can be distributed be-
tween renderers for better LOD selection, for example relationships be-
tween the data and the occupied screen space can be further used to improve
data redistribution coherency.

• Image compression

Further performance improvements can be achieved if more sophisticated
compression techniques would be used, for instance, methods that exploit
not only spatial, but also temporal image redundancy such as video codec
based compression. The challenge is to obtain very fast compression, and to
adapt compression to dynamically changing viewport. In order to improve
performance, motion compensation information could be extracted from the
camera and objects’ movements. Additionally, video compressor has to
support transparency in case of sort-last rendering.

The framework could also detect currently executed scenario and perform
selection of the compression method automatically, rather than forcing user
to pick appropriate compression beforehand.

• Parallel volume rendering system

Parallel volume rendering is a large field for research of its own, and further
possible improvements of the proposed algorithm are manifold. Volume
compression is one option to further improve storage requirements and data
fetching performance. Data fetching itself could be done from other render-
ing nodes in addition to the disk storage (this requires either data request
broadcast, or, data occupancy map distribution). Both compression and
fetching from different nodes can be easily integrated into proposed data
management system.

Further, the border between levels of detail change can be improved by tak-
ing into account this information and performing appropriate interpolation
correction. Better LOD selection strategy based on the occlusion approxi-
mation is another topic.
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Finally, global volume illumination that would span across multiple nodes
is still one of the unresolved problems in general.

• Data management system

Currently only frame rate based data management strategy is implemented,
since it is the only useful strategy for achieving interactive frame rates; how-
ever, for static scenes where no user interaction is performed, more data can
be rendered at slower speed. This type of load estimation and balancing,
where system would render more data than fits to VRAM, can also be in-
tegrated. Such behavior usually causes memory trashing since the amount
of data exceeds the amount of cache, and a better asynchronous loading
strategy is required.

So far the developed data management was only applied to the volume ren-
dering application. It has to be sufficiently simple to integrate it with any
existing approach like point-based or polygonal rendering. Besides the ren-
dering functionality itself and data fetching routines, a level of detail mech-
anism has to be available for a better out-of-core performance.

• Automatic configuration generation

Creating the best scalable configuration for arbitrary renderers and hardware
is something that was not discussed in this work at all. So far all of the con-
figurations were generated for a specific data decomposition and for certain
number of resources. It would be useful to handle automatic configuration
of an arbitrary number of resources and arbitrary renderers.

• Native GUI integration

Equalizer supports various operating systems, providing an abstraction of
the windowing functionality. This windowing system has very limited GUI
support. QT would be a good option to replace existing implementation,
however fundamental changes to the framework are required. Current dif-
ficulties lie in the combining of the execution loops of QT and Equalizer,
where each framework has its own fixed order of execution, and straightfor-
ward implementation leads to OpenGL context conflicts and performance
penalties. Therefore processing loop of Equalizer has to be substantially
changed in order to be more service-oriented.
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