An Analysis of Parallel Rendering Systems

Stefan Eilemann*

This White Paper analyzes and classifies the different approaches taken to paral-
lel, interactive rendering. The purpose is to clarify common misconceptions and false
expectations of the capabilities of the different classes of parallel rendering software.

We examine the rendering pipeline of the typical visualization application and iden-
tify the typical bottlenecks found in this pipeline. The methods used for parallel ren-
dering are classified in three fundamental approaches and then analyzed with respect
to their influence on this rendering pipeline, which leads to conclusions about possible
performance gains and the necessary porting effort.

We advocate the need for a generic, open parallel rendering framework to build
scalable graphics software. The drawbacks of other existing solutions are outlined, and
a full software stack for graphics clusters is proposed. The Equalizer project! aims
to provide such an implementation, combining existing software packages with newly
developed middleware.

Version | Date Changes

0.6 January 11, 2007 Minor rework of the whole paper
0.5.2 September 19, 2006 | Tweaked Figure

0.5.1 July 5, 2006 Added link to latest version

0.5 May 19, 2006 Initial Version

Latest version at http://www.equalizergraphics.com/documents/ParallelRenderingSystems.pdf

*eilemann@gmail.com
Uhttp:/ /www.equalizergraphics.com

http://www.equalizergraphics.com/documents/ParallelRenderingSystems.pdf
http://www.equalizergraphics.com/

1. Introduction

The purpose of this white paper is to argue for the need for a middleware to build
truely scalable, interactive visualization applications. In contrast to high-performance
computing (HPC), the high-performance visualization (HPV) community has not gen-
erally accepted the need to parallelize applications for performance. The belief that
scalabity can be achieved transparently by some magic software is still wide-spread, and
contributes to the slow adoption of graphics clusters and virtual reality installations
due to bad application performance and unavailability.

1.1. Motivation

Application developers are typically faced with making their applications aware of
multiple graphics cards for two reasons — either the application has to run on multipipe
display systems, or the rendering has to be accelerated by using parallel rendering on
multiple graphics cards. The two reasons are not mutually exclusive.

1.1.1. Multi-View Rendering

The first motivation is often to run the application on advanced, multipipe display
systems: workstations with multiple monitors, walls build out of multiple screens or
projectors as well as immersive environments. Such installations need more than one
graphics card to drive all the display systems. Therefore the rendering has to be
distributed across a number of cards, and often across multiple systems. The outputs
of the displays has to be synchronized spatially and time-wise to provide one coherent
image. In immersive environments, active or passive stereo rendering is a requirement.

ShR |

i
Ul
|

y o

Figure 1: Some advanced display systems

Applications which scale their display size often have to scale their rendering perfor-
mance, because the increased display size exposes previously undiscovered bottlenecks
in the rendering pipeline. The higher display resolution increases the needed pixel fill
rate. Due to the increased image fidelity, data of a higher resolution is used — which
increases the requirements on the whole rendering pipeline.

1.1.2. Scalable Rendering

The second motivation is to accelerate the rendering by aggregating multiple resources,
because the application hits limitations of a single graphics system. Figure [2] shows a
simplified rendering pipeline and the resources used by during rendering. The typical
performance bottlenecks in such a pipeline are:

Input

[Host

Filesystem |
«—>\[10 Bandwidth]
Database Processing
[CPU Performance]

Main M
é|Commands, Data ain iemory
I |
Graphics Bus
1 [Bus Bandwidth]

| Graphics Card |

Transform & Lighting
[Geometry Transform]
ceuenon
\
Fragment Processing
[Fill Rate]
| Pixels |
Display

Figure 2: The basic rendering pipeline

Fill Rate The amount of rendered pixels can exceed the processing capabilities of the
graphics card’s rasterization pipeline, that is, the amount of pixels the card can
render in a given time. Volume rendering and complex fragment shaders easily
limit the application’s performance due to a fill rate bottleneck.

Geometry Transform Similar to the fill rate bottleneck, but less common, are bottle-
necks in the GPU’s vertex processing capabilities, that is, the amount of triangles
a card can process. Complex geometry and procedural computations in the vertex
shader can cause this bottleneck.

GPU Memory Certain applications, for example volume rendering and terrain visual-
ization, easily exceed the amount of memory available on the graphics card. For
example, a volume of size 1024 has a size of 1 GB if it is black and white, and
4 GB if it is colored.

Bus Bandwidth Dynamic data, such as time-varying data sets and interactive modifi-
cations of the model, has high requirements on the system’s IO capabilities. The
data can not be cached on the GPU’s memory but has to be transferred to the
card from main memory (or disk) during rendering. This is a common bottleneck
of interactive applications and leads to a rendering performance below the GPU’s
capabilities.

CPU Performance Similar to the bus bandwidth, the CPU can become the bottleneck
when traversing the database to generate the rendering commands. Tesselation,
visibility computations and other interpretation of the application data for ren-
dering cause this bottleneck.

Main Memory The actual model database often holds additional application-specific
information, which is not used for rendering. Additionally, the amount of data
displayed is drastically reduced during rendering to allow interactive framerates.
This leads to application scenarios where the required main memory size exceeds
the capabilities of a single system.

10 Bandwidth Data sets which exceed the main memory size are visualized by roaming
through the data, that is, a subset of the whole data set is loaded into main memory
to be processed and rendered. As the user roams through the data, new pieces of
it are loaded from storage, which can be a bottleneck.

1.1.3. Parallelism in Graphics Hardware

Graphics cards address some bottlenecks through hardware parallelism. GPU’s have
multiple vertex pipelines (geometry transform) and multiple fragment pipelines (fill
rate) which accelerate the fill rate and geometry transform rate in hardware, trans-
parently to the application. Due to physical limitations, the number of vertex and
fragment shading pipelines on a single GPU is limited.

Recent implementations of multi-GPU systems (nVidia SLI, ATT CrossFire) provide
additional parallelism. The individual graphic processors produce a partial image which
is then composited using the hardware support. The individual GPU’s can sit on the
same card, or on separate cards with a special connection between them.

In such a setup, the graphics library dispatches the rendering commands to all ren-
dering units, a process which is transparent to the application. The overall pixel fill rate
is increased, while other potential bottlenecks are not addressed, since all commands
are sent to all cards and each card needs to have a copy of all the data (textures, display
lists, etc.). A special case is the alternate frame rendering (AFR) mode, where each
card renders full, alternating frames. This mode also scales geometry transform and
bus bandwidth, while increasing the latency between input and the rendered output.

Since the application is unmodified, all rendering commands are still submitted by
one thread, which has to be able to saturate the additional graphics cards to make use
of the additional hardware. Distributed scene graphs and parallel rendering frameworks
can in theory parallelize the rendering for such hardware, once the hardware vendors
provide the necessary API’s to program the hardware.

2. Transparent Multipipe Rendering Software

Transparent rendering software replaces the system’s rendering library, e.g. OpenGL
or Direct3D, with a new ’intercept’ library. The application’s output is taken at the
rendering command level, that is, the entry points of the rendering library are replaced
by new functions. The new functions package the rendering command stream, analyze
it and send it to a number of rendering processes, potentially over the network to other
systems. This approach is typically used for the applications which want to use multiple
graphics cards to scale the display size. A limitation of this approach is that unmodified
applications may not be able to run on non-planar display systems, because important
data is not rendered due to the application’s view frustum culling.

Transparent solutions can only increase the rendering performance if the main bottle-
neck is on the graphics card (geometry transform or fill rate). The processing stages to

produce the rendering commands are untouched and remain single-threaded. Potential
CPU bottlenecks in the rendering thread are amplified, since packaging and sending of
the rendering commands to other processes is more time-consuming than writing the
commands directly to a GPU. The bandwidth and latency to the rendering nodes is
worse than the direct local connection to the graphics card. In reality, this approach
often scales the display size at the expense of performance, since applications are rarely
limited by the GPU processing speed.

Analyzing the command stream allows some optimizations. The transparent library
can determine the visiblity of rendering commands and textures for each rendering unit,
and only send the data to the appropriate processes. This can reduce the rendering
load of the individual graphics cards. However, this command stream filtering is only
benefitial for the performance if it can be performed faster than the actual rendering
— which is normally only the case for static chunks of data, such as display lists and
large textures.

Some transparent rendering packages support parallelization of the application, that
is, the application is modified and renders using multiple threads. This support is
often rudimentary and does not address other problems, such as configuration and data
distribution. Furthermore, by working on the low-level graphics command stream, the
attainable performance is limited up-front. From an application developers point of
view, writing a parallel application using a transparent framework is at least the same
effort as using a parallel rendering framework. For the purpose of this white paper,
such an extension to a transparent software can be considered a parallel rendering
framework.

3. Distributed Scene Graphs

The distributed scene graph approach requires that the application uses the given
scene graph to describe the model database. The rendering of that scene graph is
parallelized by the scene graph’s implementation, to a great extend transparently to
the application. The scene graph is replicated and kept up-to-date on all rendering
nodes. During rendering, the individual instances are traversed in parallel to generate
the rendering commands, which are directly send to the graphics hardware.

From the applications point of view, this approach is similar to the transparent
solutions, in that the rendering is parallelized by some 'magic’ software. The big differ-
ence is that a distributed scene graph approaches the problem at a much higher level,
which allows significant optimizations and leads to better performance. In contrast to
transparent rendering software, the traversal to generate the rendering commands is
parallelized, and the commands are send —in parallel- directly to the graphics card.
The scene graph frees the application developer of the task to parallelize the rendering.

4. Parallel Rendering Frameworks

Parallel rendering frameworks help application developers to parallelize their applica-
tion. They do not impose a scene graph or other rendering libraries on the application.
By solving the common problems of any multiple application, the application devel-
oper can focus on application-specific problems. Parallel rendering frameworks address

synchronization, task decomposition and load-balancing, data transport as well as the
composition of the rendering result. In many ways, they are comparable to HPC li-
braries such as MPI and PVM, while being focused on interactive applications and
parallel rendering.

Parallel rendering frameworks provide an execution environment for any application,
regardless of the used rendering software. Refactoring the application, other then
necessary for multipipe rendering, is not needed. The application provides entry points
for its rendering functions. Depending on the current configuration, the framework
creates the necessary rendering threads which are initialized with a rendering context by
the application’s init functions. When the application request a new frame of rendering,
the framework calls the necessary rendering callbacks in the correct context and order.

5. Conclusion

From a technical point of view, choosing the right approach to parallel rendering
depends on the requirements and bottlenecks of the application. Figure [3] gives an
overview how well the different bottlenecks can be addressed with the various solu-
tions.

Scalability

Main Memory
CPU Performance

Bus Bandwidth

Geometry Transform

Bottleneck

GPU Memory

Fill Rate

Figure 3: Scalability of the different parallel rendering approaches

The least intrusive approach of using a transparent software is often explored first,
which frequently does not meet the expectations and requirements. Performance gains
with transparent solutions are possible with benchmarks or well-behaved applications,
but real-world software often does not run faster, slowdowns are commonly observed.
Transparent rendering software often supports only a subset of the features and exten-
sions of the rendering API, in particular anything which requires a roundtrip to the
graphics card is unsupported or slow. On the other hand, a transparent solution is a
viable way to run a certain set of applications on graphics clusters. For legacy applica-
tions, which cannot be modified, it is the only possibility to make them multipipe-ready.
The low porting effort is a strong benefit for transparent rendering software.

Distributed scene graphs are the ideal and obvious solution if the application already
uses such a scene graph, or is planning on using one in the near future. The distributed
scene graph, especially when build upon a parallel rendering framework, can deliver
optimal performance while requiring little to no application changes. Porting an exist-

ing application to a distributed scene graph is often impractical due to the high porting
cost.

Parallel rendering frameworks are the common middleware for any multipipe applica-
tion. Distributed scene graphs and transparent rendering software can use it as the base
for their implementation. Applications not suitable for these approaches can easily im-
plement their parallel rendering on such a framework. The porting effort is reduced to
the unavoidable refactoring needed to separate the rendering from the core application
in order to to make it distributable. A parallel rendering framework addresses common
problems encountered when doing such a port and follows the natural programming
model for any multipipe application. For high-performance applications, a parallel
rendering framework is the only solution short of a completely custom implementation.

Parallel rendering frameworks can and should be the foundation of transparent solu-
tions and distributed scene graphs. These approaches then become ’applications’ of the
parallel rendering framework to address a certain subset of parallel rendering applica-
tions - namely performance-uncritical and legacy applications, as well as applications
already written using a specific scene graph. Figure {4]illustrates the proposed software
stack.

HPV Applications TLegacy Applications

Scenegraph] [Transparent Layer

[Parallel Rendering Framework]

Graphics and System Libraries

Figure 4: Proposed software stack for a visualization system

The three approaches to parallel rendering complement each other and serve different
application needs. Transparent solutions are a quick way to run interactive applications
on graphic clusters, but they do not provide the necessary performance for many ap-
plications. Likewise, distributed scene graphs are often too invasive since they require
the applications to use a certain format and API —the scene graph— to decribe their
data.

A. Current Parallel Rendering Software

This appendix gives a short and incomplete overview of the existing software solutions
for parallel rendering.

A.1. Transparent Multipipe Rendering Software

A.1.1. Chromium

Chromium is a Open Source solution originally developed by the Stanford Univer-
sity. Some graphics cluster vendors, most notably Tungsten Graphics, support and

extend Chromium on their hardware platforms. Chromium provides functionality for
the synchronization of the rendering commands when using multiple, parallel applica-
tion instances.

A.1.2. VGP Software Solutions

The Virtual Graphics Platform sold by ModViz, Inc. is a proprietary software solution
similar to Chromium. The VGP Integration API allows to augment the OpenGL
command stream with additional information to improve the rendering performance.

A.1.3. OpenGL Multipipe

OpenGL Multipipe is a transparent software solution delivered with SGI’s multipipe
machines. It is not sold separately. For building parallel applications, SGI offered
OpenGL Multipipe SDK.

A.2. Distributed Scene Graphs
A.2.1. TGS Open Inventor Cluster Edition

The Open Inventor Cluster Edition is an extension to the Open Inventor scene graph
to support parallel, distributed rendering on graphics clusters. It does support both
multi-view and scalable rendering.

A.2.2. OpenSG

OpenSG is an open source scenegraph and provides various functionality for parallel
rendering, including network data distribution and scalable rendering modes.

A.3. Parallel Rendering Frameworks
A.3.1. OpenGL Multipipe SDK

OpenGL Multipipe SDK from Silicon Graphics, Inc. is a proprietary framework for
the development of scalable graphics applications. It does not support distributed
rendering, and is not actively developed anymore.

A.3.2. CAVELib

CAVELib from VRCO Inc. is a proprietary, parallel rendering framework which sup-
ports parallel multi-view rendering.

A.3.3. Equalizer

Equalizer is an open source parallel rendering framework under development by the
University of Ziirich and others. Equalizer supports multi-view and scalable rendering,
and a resource management system and a transparent rendering layer is planned.

OpenGL, Open Inventor and OpenGL Multipipe is a trademark of Silicon Graphics, Inc. SLI is a
trademark of nVidia. CrossFire is a trademark of ATI. Virtual Graphics Platform is a trademark of
ModViz, Inc. CAVELIb is a trademark of VRCO Inc. All other products named are trademarks of
their respective owners.

	Introduction
	Motivation
	Multi-View Rendering
	Scalable Rendering
	Parallelism in Graphics Hardware

	Transparent Multipipe Rendering Software
	Distributed Scene Graphs
	Parallel Rendering Frameworks
	Conclusion
	Current Parallel Rendering Software
	Transparent Multipipe Rendering Software
	Chromium
	VGP Software Solutions
	OpenGL Multipipe

	Distributed Scene Graphs
	TGS Open Inventor Cluster Edition
	OpenSG

	Parallel Rendering Frameworks
	OpenGL Multipipe SDK
	CAVELib
	Equalizer

