
Eurographics Symposium on Parallel Graphics and Visualization (2010)
J. Ahrens, K. Debattista, and R. Pajarola (Editors)

Fast Compositing for Cluster-Parallel Rendering

M. Makhinya†1, S. Eilemann2,1, R. Pajarola1

1Visualization and MultiMedia Lab, University of Zürich 2Eyescale Software GmbH

Abstract
The image compositing stages in cluster-parallel rendering for gathering and combining partial rendering re-
sults into a final display frame are fundamentally limited by node-to-node image throughput. Therefore, efficient
image coding, compression and transmission must be considered to minimize that bottleneck. This paper studies
the different performance limiting factors such as image representation, region-of-interest detection and fast im-
age compression. Additionally, we show improved compositing performance using lossy YUV subsampling and
we propose a novel fast region-of-interest detection algorithm that can improve in particular sort-last parallel
rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed Graphics; I.3.m [Computer Graphics]: Miscellaneous—Parallel Rendering

1. Introduction
Task decomposition for parallel rendering can take place in
different stages of the rendering pipeline. Frame-based ap-
proaches distribute entire frames, i.e. by time-multiplexing
(DPlex) or screen-space decomposition (2D), to different
rendering processes. In this cases the compositing stage is
fairly straightforward and consists of the collection of frames
or tiles on the display destination, and network transmission
cost can generally be ameliorated with fairly simple meth-
ods.

With respect to Molnar [MCEF94] on the sorting stage
in parallel rendering, we can identify three categories of
intraframe-like decomposition modes: Sort-first (2D) de-
composition divides a single frame spatially and assigns the
resulting tiles to the render processes; Sort-last (DB) decom-
position does a domain decomposition of the database across
the rendering processes. A sort-middle approach can typi-
cally not be modified or custom implemented as one needs to
intercept the transformed and projected geometry (in scan-
space) after primitive assembly which does not translate to a
feasible and scalable cluster-parallel rendering system.

For sort-last rendering, the recomposition of the partial
frames into the final frame is more time-consuming than
for sort-first. A number of special-purpose image composit-
ing hardware solutions for sort-last parallel rendering have

† makhinya@ifi.uzh.ch, eile@eyescale.ch, pajarola@acm.org

been developed. Proposed hardware architectures include
Sepia [MHS99], Sepia 2 [LMS∗01], Lightning 2 [SEP∗01],
Metabuffer [BBFZ00], MPC Compositor [MOM∗01], Pix-
elFlow [MEP92] and network processing [PMD∗07], of
which only a few have reached the commercial product stage
(i.e. Sepia 2, MPC and PixelFlow). However, the inherent in-
flexibility and setup overhead have limited their usefulness
and with the recent advances in CPU-GPU interfaces, com-
binations of software and GPU-based solutions offer more
flexibility at comparable performance and lower price.

Distributed cluster-parallel image compositing, even if
only for image assembly as in sort-first rendering, is fun-
damentally limited by the network throughput that bounds
the amount of image data that can be exchanged between
nodes. Hence efficient image coding, compression and trans-
mission techniques must be considered in this context. In
this paper we study in detail different performance limiting
factors such as image formats, pixel read-back, region-of-
interest selection and GPU assisted compression.

The contributions presented in this paper not only con-
sist of an experimental analysis about the impact of im-
age throughput on parallel compositing but also introduce a
novel region-of-interest (ROI) identification algorithm. We
furthermore show how image throughput can be improved
using YUV subsampling combined with specific RLE meth-
ods as well as applying an effective ROI selection method.

c� The Eurographics Association 2010.

Makhinya & Eilemann & Pajarola / Fast Compositing

2. Related Work
A number of general parallel rendering concepts have been
discussed before, such as parallel rendering architectures,
distributed compositing, load balancing, data distribution, or
scalability. However, only a few generic APIs and parallel
rendering systems exist which include VR Juggler [BJH∗01]
(and its derivatives), Chromium [HHN∗02], OpenGL Multi-
pipe SDK [BRE05] and Equalizer [EMP09], of which the
last is used for the work presented in this paper.

For sort-last rendering, a number of parallel com-
positing algorithm improvements have been proposed in
[MPHK94, LRN96, SML∗03, EP07, YWM08, PGR∗09]. In
this work, however, we focus on improving the image com-
positing data throughput by data reduction techniques appli-
cable to different parallel compositing methods. Hence we
consider the two extreme cases of serial and binary-swap
or direct-send compositing in our experiments, having O(N)
serially or exactly two full images concurrently to exchange
in total between the N rendering nodes respectively. For sort-
first parallel rendering, the total image data exchange load is
fairly simple and approaches O(1) for larger N.

To reduce transmission cost of pixel data, image com-
pression [AP98, YYC01, TIH03, SKN04] and screen-space
bounding rectangles [MPHK94, LRN96, YYC01] have been
proposed. However, with modern GPUs these concepts do
not always translate to improved parallel rendering as in-
creased screen resolutions and faster geometry throughput
impose stronger limits under which circumstances these
techniques are still useful. A disproportional growth and
shift in compositing-cost that increases with the number of
parallel nodes can in fact negatively impact the overall per-
formance, as we show in our experiments. Therefore, care
has to be taken when applying image compression or other
data reduction techniques in the image compositing stage of
parallel rendering systems.

3. Parallel Rendering Framework
The parallel rendering framework of our choice, i.e. Equal-
izer [EMP09], has a number of advantages over other sys-
tems, in particular its scalability and flexibility of task de-
compositions. However, the basic principles of parallel ren-
dering are similar for most approaches, and the analysis,
experiments and improvements on image compositing pre-
sented in this paper are generally applicable.

In a distributed rendering setting, the general execution
flow is as follows, omitting event handling and other applica-
tion tasks: clear, draw, read-back, transmit and depth-based
composite or 2D-assemble for display. Clear and draw are
largely ignored in this work, but we run experiments with
different geometric complexities that affect the draw speed
to gain insight into performance behavior under different
configurations.

In the following we focus on the read-back, transmission
and compositing stages and in particular on the image pro-

cessing throughput which, for a given network bandwidth, is
chiefly affected by the image representation.

4. Distributed Image Compositing
Distributed parallel image compositing cost is directly de-
pendent on how much data has to be sent over the network,
which in turn is related to how much screen space is actively
covered. Additionally, read-back and transmission times are
also affected by image color and compression formats.

In the following we first introduce our generic sparse-
image representation approach that can be used in any sort-
first or sort-last parallel rendering configuration. Further data
reduction can be achieved using image compression. How-
ever, this must meet demanding requirements, as its over-
head has to be strictly smaller than any transmission gain-
ings, which can be difficult to achieve.

4.1. Regions-of-Interest
In sort-last rendering, every node potentially renders into the
entire frame buffer. With an increasing number of nodes the
set of affected pixels typically decreases, leaving blank areas
that can be omitted for transmission and compositing.

Our region-of-interest (ROI) algorithm splits the frame
buffer into parts with active pixels and excluded blank ar-
eas. The active ROI is less or equal to the frame buffer size
and depends on how many pixels have actually been gener-
ated. Thus the maximal benefit will be reached when each
node renders only to a compact region in the frame buffer.
This assumption largely holds for hierarchically structured
data which is often used to accelerate culling and rendering.

The ROI algorithm is called when all rendering is fin-
ished right before read-back. Identified subregions are in-
dividually treated for read-back, compression and transmis-
sion (RBCT) as well as compositing, any of which is reused
from the original parallel rendering framework.

4.1.1. ROI selection
For an efficient RBCT process, there are several desired fea-
tures that final regions should exhibit:
• compact rectangular shape
• coverage of all generated pixels in the frame buffer
• no region overlap
• smallest possible area for limited number of regions

Since the number of regions must be limited to avoid ex-
cessive GPU read-back requests, the last feature is the most
difficult to achieve. Our proposed ROI method reformulates
the last criterium as follows: we aim to exclude as much of
the blank frame buffer area as possible with as little effort
as possible. Our solution preserves the other criteria while
effectively removing the undesired blank spaces.

ROI selection itself requires time and if its area is not
significantly smaller than the entire frame buffer it may af-
fect performance negatively due to overhead. The decision

c� The Eurographics Association 2010.

Makhinya & Eilemann & Pajarola / Fast Compositing

whether to use ROIs or not is made dynamically while iden-
tifying blank regions. If the blank area is too small with
respect to the frame buffer size, ROI selection fails and is
turned off, delayed for one frame, meaning the whole screen
will be read-back in the next frame. Every consecutive ROI
failure causes an increasing delay to the next ROI estima-
tion up to a certain limit at which ROI estimation is done at
a regular periodic rate. Currently this limit is at 64 frames,
equalling to a few seconds of real-time interaction and min-
imizing overhead of failed ROI estimation.

The algorithm itself consists of two main parts: per-block
occupancy calculation performed on the GPU and region
split estimation executed on the CPU as indicated in Fig-
ure 1.

GPU

СPU

Calculate per-
block occupancy

Use ROI?

Update
ROI efficiency

Readback
occupancy mask

Estimate
region split

Readback request
(1 region)

1-n ROIs
readback

YesNo

Figure 1: ROI selection algorithm.

To speed up the region split process, a block-based occu-
pancy mask is used. This mask is computed using a fragment
shader on the GPU. It contains a flag for each grid block in-
dicating whether it contains rendered pixels or not. For ROI
selection, the reduced-size bitmask is transferred to the main
memory. On the CPU a block-based region split is computed
aligning the ROIs to the regular grid blocks. If enabled,
the necessary ROIs will then be read back from the GPU
for further compression, transmission and final compositing.
Empty areas are dedected using either a specified solid back-
ground color or by analyzing z-buffer values. 16×16 blocks
are used for the occupancy mask, which provides a good
trade-off between speed and precision.

The split algorithm is based on recursive region subdivi-
sion. Each iteration consists of two steps: finding the largest
rectangular blank area (a hole); and best split determination
based on hole position and size. Figure 2 illustrates the recur-
sive per-block occupancy hole detection and split process.
Depending on a hole position within a region, there are sev-
eral possible split options. For this particular hole’s config-
uration, there are two ways to obtain rectangular sub-areas
that do not include the hole itself but only the rest of the
image, one of these is shown in each subsequent step.

4.1.2. Hole search
Identifying the largest unused rectangular region within the
block-based occupancy mask is efficiently performed us-
ing a summed area table (SAT). The occupancy map is

?

?

?

Figure 2: Recursive largest hole detection and subtraction
for recursive ROI selection.

transformed into a SAT with entries indicating the number
of empty blocks up to the given index. Thus emptiness of
any rectangular region can quickly be verified by four SAT
lookups and comparison to the block size of the region.

A maximal empty-area search algorithm is defined as a se-
quence of requests to the SAT, and executed in the following
way over the block-based occupancy map SAT:
1. Search in scan-line order bottom-up for empty blocks.
2. In each step, find the intermediate largest hole, a rectan-

gular hole that includes the current block and is bounded
by the upper right corner of the map.

3. Update the current largest hole if the new one is bigger.
The intermediate largest hole search in Step 2. is based on

a three-fold region growing strategy as shown in Figure 3.
The strategy is to first grow an empty square region diago-
nally, followed by growing a tall empty rectangle vertically
with subsequently reduced width on every empty-region test
failure. The same is then performed analogously horizon-
tally. In each growth step an empty-region test corresponds
to a query of the SAT occupancy map.

1

1

2 2 2

3

3 3

4

Figure 3: Largest hole searching first proceeding diagonally
upwards (1), then vertically with decreasing width (2) and
last horizontally with decreasing height (3). Eventually the
largest hole found (4) is reported.

To avoid identifying too small empty areas, the hole
search procedure is terminated if either a minimal absolute
or relative empty region size threshold is not reached. In that
case a zero-sized hole is reported to avoid further recursion.
These values can be set to quite high values (e.g. 200 blocks
and 2%) and still give acceptable cuts.

c� The Eurographics Association 2010.

Makhinya & Eilemann & Pajarola / Fast Compositing

4.1.3. Split estimation
A region split is executed once after the largest hole in a
current frame buffer region has been found. There are four
categories of hole positions as shown in Figure 4, of which
only the first one leads to a simple split into two new vertical
or horizontal rectangular regions.

(a) (b) (c) (d)
Figure 4: Different categories of hole positions: (a) through,
(b) corner, (c) side and (d) center.

The symmetry classes of possible region splits are shown
in Figure 5. For a corner hole only two variants are possible,
with one either vertical or horizontal line aligned to one of
the hole’s edges. A side hole has four different options, and
a center hole has two unique configurations as well as four
which reduce it to a side hole.

x4

Figure 5: Symmetry categories of region splits.

To find the best split, our algorithm maximizes the area
that can be removed in the next subdivision. That is, a hole
search is performed for the subregions of every possible split
and the accumulated size of all holes is considered. For the
best split the determined hole positions are forwarded to the
recursive split processes for each subregion.

In order to avoid excessive and repeated hole searches,
information from common subregions is shared. There is a
maximum of 16 different subregions that have to be checked
depending on the hole position, as depicted in Figure 6. For
corner and side holes, disappearing subregions are consid-
ered to have a zero hole area.

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

Figure 6: Different subregions for split calculation.

4.2. Image Compression
Basic run-length encoding (RLE) has been used as a fast
standard to improve network throughput for interactive im-
age transmission. However, it only gives sufficient results in
specific rendering contexts and fails to provide a general im-
provement as will be shown also in our experimental results.
RLE only works to compact large empty or uniform color

areas but is often useless for non-trivial full frame color re-
sults. We analyze two enhancements to improve this, per-
component RLE compression and swizzling of color bits.

More complex (and lossy) image compression techniques
(e.g. such as LZO or EZW) may promise better data re-
duction, however, at the expense of significantly increased
compression cost which renders many solutions infeasible in
this context (see Appendix A). Additionally, lossy compres-
sion (e.g. such as used in VNC) may only be tolerable when
compression artifacts are masked by motion and high frame
rates. In this paper we study the benefit of YUV subsam-
pling, also combined with RLE, as it can provide very fast
and effective compression for scenes in motion, and loss-
less reconstruction can easily be incorporated by incremental
transmission of the missing data from the last frame. Hence
we focus on a few provenly simple and very fast techniques
such as RLE and YUV subsampling, see also Section 6 for
some more discussion.

4.2.1. Run-length encoding
For the basic RLE method we use a fast 64-bit version that
compares two pixels at the same time (8-bit per channel
RGBA format). While this method is very fast it shows poor
compression results in most practical settings. A general
concept in image compression is to treat color components
separately, as illustrated in Figure 7. Results on the different
RLE schemes are reported in the experiments.

R G B A R G B A R G B A

32 bit

64 bit

R G B A

64 bit

RLE

RLE

RLE
...

Figure 7: Comparison of 64-bit and per-component RLE.

A second improvement is bit-swizzling of color values
before per-component compression. That way the bits are
reordered and interleaved as shown in Figure 8. Now per-
component RLE compression separately compresses the
higher, medium and lower order bits, thus achieving stronger
compression for smoothly changing color values.

8 7 6 5 4 3 2 18 7 6 5 4 3 2 18 7 6 5 4 3 2 18 7 6 5 4 3 2 1

2 1 2 1 2 1 2 14 3 4 3 4 3 4 36 5 6 5 6 5 6 58 7 8 7 8 7 8 7

R G AB

S4 S3 S1S2

Figure 8: Swizzling scheme for reordering bits of 32-bit
RGBA values.

4.2.2. YUV subsampling
Lossy compression in our study consists of RGB to YUV
color transformation and chroma subsampling (4:2:0) since
it allows fast computation, good general compression and
incremental reconstruction to full chroma color if necessary.
Without an additional RLE stage, a compression ratio of 2 : 1

c� The Eurographics Association 2010.

Makhinya & Eilemann & Pajarola / Fast Compositing

can always be achieved this way with good image quality,
especially for dynamic motion. Color transformation, sub-
sampling and byte-packing can all be done efficiently in a
fragment shader such that not only network transmission but
also read-back from the frame buffer will be improved.

Figure 9 illustrates the YUV subsampling and byte pack-
ing. While luminosity values are packed to the left of a 2×2
4-channel pixel block, the chromaticity values are averaged.
However, to reduce color distortion at silhouettes only non-
zero, non-background color values are averaged. Alpha val-
ues are pair-wise averaged on a scan line, and are not needed
in the case of sort-first rendering. An example of chroma
subsampling is given in Section 5.4.

B1G1R1 A1

B3G3R3 A3

B2G2R2 A2

B4G4R4 A4

Y1 U1 V1 A1

Y3 U3 V3 A3

Y2 U2 V2 A2

Y4 U4 V4 A4

Y1 Un

Vn

An

Y3 An

Y2

Y4RGB to YUV

Average

Figure 9: Lossy RGB to YUV transform and subsampling.

The particular color sampling and packing pattern has
been chosen to easily support subsequent RLE compression.
The above outlined RLE method processes pixels in scan-
line order and thus component-wise RLE can directly be ap-
plied after YUV transformation and subsampling.

5. Experimental Analysis
Any parallel rendering system is fundamentally limited by
two factors: the rendering itself, which includes transforma-
tion, shading and illumination; as well as compositing mul-
tiple partial rendering results into a final display, i.e. image.
While an exceeding task load of the former is the major
cause for parallelization in the first place, the latter is often a
bottleneck due to limited image data throughput.

In our experiments we investigate the image transmission
and compositing throughput of sort-first and sort-last parallel
rendering. For the sort-last we study serial as well as direct-
send (DS) compositing, as they exhibit two extreme cases in
parallel compositing strategies in terms of image transmis-
sion.

All tests were carried out on a 10-node cluster, Hac-
tar, with the following technical node specifications: dual
2.2GHz AMD Opteron CPUs; 4GB of RAM; one or two
GeForce 9800 GX2 GPUs and a high-resolution 2560×
1600 pixel LCD panel; 2 Gbit/s Myrinet and switch, as well
as 1 Gbit/s ethernet network.

5.1. Throughput Limits
First, we identify the typical distributed image compositing
and thus parallel rendering performance limits when image
compression is not used. This will also demonstrate that the

used parallel rendering framework is in fact very resource
efficient and achieves the expected limits.

Figure 10 shows different image throughput limits for two
different frame buffer resolutions, without using image com-
pression, in the context of sort-first rendering. In sort-first
rendering, given N rendering nodes (one of which is also
the display node), the network will be loaded with the cost
of transmitting N−1

N of the full frame buffer image data to
the final display node. Hence with increasing N, the image
transmission throughput and thus compositing speed is ex-
pected to decrease. In the limit (N → ∞) we can expect a
maximal frame rate of µ/sFB for a given network bandwidth
µ and frame buffer size sFB. Using netperf, we evaluated a
realistic achievable data transmission rate of µ = 115MB/s
and µ≤ 240MB/s for 1Gbit and 2Gbit networks. Thus for a
frame buffer size sFB of 1280×1024 (5MB) we expect up to
23fps or 48fps, and for 2560× 1600 (16MB) 7fps or 15fps
respectively for the different network speeds. The maximal
achievable frame rates limited by the bandwidth as described
above are indicated in Figure 10 with Theor. Max..

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

#" $" %" &" '" (")" *" +" #!"

,
-
.
"

/0123"

-2450467892"504"#$*!:#!$&"423;"/0"906<4233=08"

!"!#$%&'(!!)*+,-.!/01.!

!"!#$%&'(!!)-02(3%&!4256!

!"!#$%&'(!!7,!8+29+-%2:!

!"!#$%&'(!!;<55!

!=!#$%&'(!)*+,-.!/01.!

!=!#$%&'(!!)-02(3%&!4256!

!=!#$%&'(!!7,!8+29+-%2:!

!=!#$%&'(!!;<55!

(a)

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

$" %" &" '" #" (")" *" +" $!"

,
-
.
"

/0123"

-2450467892"504"%#(!:$(!!"423;"/0"906<4233=08"

!"!#$%&'(!!)*+,-.!/01.!

!"!#$%&'(!!)-02(3%&!4256!

!"!#$%&'(!!7,!8+29+-%2:!

!"!#$%&'(!!;<55!

!=!#$%&'(!)*+,-.!/01.!

!=!#$%&'(!!)-02(3%&!4256!

!=!#$%&'(!!7,!8+29+-%2:!

!=!#$%&'(!!;<55!

(b)

Figure 10: Maximal theoretical and real image throughputs
for (a) 1280x1024px and (b) 2560x1600px resolutions.

Ignoring any rendering cost but only focusing on image
throughput and compositing, the experiments show that our
parallel rendering setup is efficient and approaches the ex-
pected limits. The Transmit Only graphs in Figure 10 indicate
the system’s limit simply for transmitting the partial frame
buffer results to the destination, which nicely follows the ex-
pected limits in particular for the larger frame buffer. The No

c� The Eurographics Association 2010.

Makhinya & Eilemann & Pajarola / Fast Compositing

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

$" %" &" '" #" (")" *" +" $!"

,
-
.
"

/0123"

45671"8251"-9:2";2<12:7<="-2:>0:?5<@2"

!"#$%!&'(%'!)*#

!"#$!+,'(%,''*#

"-#$%!&'(%'!)*#

"-#$!+,'(%,''*#

./0123#$%!&'(%'!)*#

./0123#$!+,'(%,''*#

(a)

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'" #" (" $")" %" *" &" +" '!"

,
-
.
"

/0123"

-0425"-6789":750;81<"-;52"=28125>8?"-25@05A78B2""

!"#$%!&'(%'!)*#

!"#$!+,'(%,''*#

"-#$%!&'(%'!)*#

"-#$!+,'(%,''*#

./0123#$%!&'(%'!)*#

./0123#$!+,'(%,''*#

(b)

!"

#!"

$!"

%!"

&'!"

&(!"

&)!"

'&!"

&" '" #" *" (" $" +")" %" &!"

,
-
.
"

/0123"

-0425"-6789":9;50<=;>"-<52"?28125@8="-25A05B78C2""

!"#$%!&'(%'!)*#

!"#$!+,'(%,''*#

"-#$%!&'(%'!)*#

"-#$!+,'(%,''*#

./0123#$%!&'(%'!)*#

./0123#$!+,'(%,''*#

(c)

Figure 11: Rendering-only performance: (a) David Head, (b) Power Plant (fly around), and (c) Power Plant (fly through).

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

#" $" %" &" '" (")" *" +" #!"

,-
.
"

/0123"

45261"7#8"#$*!7#!$&8"#9:;<=3""

!"#$% &'(%)*%

&'(%+",-% &'(%./0112$%

345% 345%&'(%)*%

345%&'(%+",-% 345%&'(%./0112$%

67$"8$9:;2%<;=0,>,%

(a)

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

#" $" %" &" '" (")" *" +" #!"

,-
.
"

/0123"

45261"7$8"#$*!7#!$&8"#9:;<=3""

!"#$% &'(%)*%

&'(%+",-% &'(%./0112$%

345% 345%&'(%)*%

345%&'(%+",-% 345%&'(%./0112$%

67$"8$9:;2%<;=0,>,%

(b)

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

#" $" %" &" '" (")" *" +" #!"

,-
.
"

/0123"

45261"7&8"#$*!7#!$&8"#9:;<=3""

!"#$% &'(%)*%

&'(%+",-% &'(%./0112$%

345% 345%&'(%)*%

345%&'(%+",-% 345%&'(%./0112$%

67$"8$9:;2%<;=0,>,%

(c)

Figure 12: Different color compression for David Head model: (a) normal rendering speed, (b) double rendering load, (c) four
times rendering load (same model rendered one, two and four times respectively). Theoretical maximum lines correspond to the
best speed possible when only considering the time required for uncompressed image transmission over the given network.

Rendering curves for the entire sort-first compositing task,
but still not accounting for actual rendering itself, indicate
the hard limits of the rendering system if no image compres-
sion is used. These results still closely follow the bandwidth
constraints and theoretical expected limits, and thus demon-
strate that the sort-first compositing stage does not introduce
any significant overhead.

A full rendering test, labeled as Full in Figure 10, with
only a small polygonal object further confirms the limits and
resource efficiency of the system. The curves show that the
frame rate is quickly limited by the image throughput and
decreases accordingly for larger N. Only for a small frame
buffer and slow network configuration the frame rate initially
increases when adding rendering nodes until being domi-
nated by the image throughput constraints. Hence apparently
there is no notable overhead introduced in the parallel ren-
dering system.

Basic scalability for larger models is confirmed in Fig-
ure 11, showing what can be reached in the best case just
from rendering, this time not taking any image transmission
and compositing into account. Both sort-first and sort-last
parallel rendering improve rendering speed almost linearly
for uniformly distributed geometry (Figure 11(a)), How-
ever, sort-first scalability starts to flatten out at some point
as expected due to smaller viewports but constant per-node

culling costs. For the large Power Plant model, the results in
Figs. 11(b) and 11(c) show that sort-last rendering can scale
superlinearly due to GPU caching effects. It also shows that
for uneven distributed geometry, a regular sort-first screen
decomposition cannot improve rendering speed, which is ex-
pected as well.

5.2. Sort-first Performance
To evaluate compression benefits in relation to the basic im-
age throughput we have analyzed RLE, per-component RLE,
swizzle RLE and YUV subsampling. While YUV is lossy,
it can often be used without noticeable loss in visual qual-
ity (see also Figure 17), and it can be combined with RLE.
Figure 12 shows the overall frame rate due to image com-
pression for varying geometric model complexity. It shows
that basic RLE does not help for non-uniform color images.
While per-component or swizzle RLE are more costly, they
can achieve an improvement. Swizzle RLE works reason-
ably well as it can improve image transmission more signif-
icantly.

YUV subsampling reduces the chromatic color compo-
nents by a factor of 4 and thus the total image size by 2
at minimal extra image processing cost. This data reduc-
tion shows immediate effects on the frame rate as shown in
Figs. 12(a) and 12(b). It is also confirmed that basic RLE

c� The Eurographics Association 2010.

Makhinya & Eilemann & Pajarola / Fast Compositing

does not improve upon YUV (compare curves YUV with
YUV RLE 64). However, per-component or swizzle RLE
based compression on top of YUV subsampling can further
improve the image throughput and overall frame rate (see
curves YUV RLE Comp with YUV RLE Swizzle).

Figs. 12(b) and 12(c) show the effect of pure rendering
limits for larger models and consequently achievable paral-
lel speedup. If the 3D data complexity is so high that ren-
dering itself is the bottleneck, adding more nodes improves
sort-first parallel rendering until the image throughput limit
is reached (see curves None with RLE 64). Only after that in-
tersection point, image compression has a noticeable effect.

Figure 12 furthermore confirms the 23fps limit for N→∞,
with sFB = 1280×1024 screen and bandwidth µ = 115MB/s
since all measures converge to that, unless compression is
applied. These results will scale appropriately with screen
resolution and network bandwidth.
The complete composing performance is defined by:
1. Read-back
2. Compression (if compression is used)
3. Transmit
4. Decompression (if compression is used)
5. Per-image compositing
The results in Figure 12 help to further understand the influ-
ence of different approaches to sort-first rendering.

In the tests above the per-vertex colored David Head
model was placed in the center and nearly covering the full
screen. The animation rotated the model around x and y.
The results confirm that image transmission has the most
significant influence compared to read-back and composit-
ing which cause very little overhead. Basic RLE compres-
sion proves to have poor performance and only swizzle RLE
can sufficiently compensate extra compression cost with in-
creased image throughput, outperforming in total other RLE
versions.

YUV subsampling alone improves performance due to the
fixed data reduction, which can further be improved in com-
bination with per-component or swizzle RLE.

RLE compression is implemented using OpenMP on the
CPU, however, our parallel framework is already running
four threads and the CPUs are fully used. If more than four
cores are used, one could expect improved performance of
RLE (we observe doubling of RLE speed on 2 cores, when
tested without the rest of the framework running).

5.3. Sort-last Performance
Sort-last parallel polygon rendering uses the z-buffer in order
to perform z-depth compositing of partial rendering results.
Thus the z-depth buffer data also has to be sent over the net-
work.

5.3.1. Depth component compression
To determine the best depth component compression we
have set color compression to RLE and are using serial sort-

last compositing which imposes a network image transmis-
sion load proportional to the number N of rendering nodes.
We use color RLE since it removes blank screen space effec-
tively which is typical for sort-last rendering. In Figure 13
uncompressed depth data is indicated in the graph by None.
Measures are shown for different data models (David Head,
Power Plant around and fly-through), network bandwidth
and for N = 2,6,10 nodes.

For uniform partitioning of geometry each node is ren-
dering 1/N of the data and less screen space is covered
with increasing N for sort-last rendering. Hence empty-pixel
skipping is more important than actual depth-value compres-
sion to transmit the full-frame sized depth-buffer to the final
destination node. This is supported in Figure 13 with sim-
ple RLE depth compression performing better than the more
complex per-component or swizzle variants.

However, in the case where partitioning of the data does
not lead to sparse images for sort-last compositing, but most
of the frame buffer is covered, per-component RLE com-
pression shows better results. This experiment is reported in
the last two columns of Figure 13 where the model is ren-
dered twice on two nodes, covering the entire frame buffer
on both nodes. In Section 6 we briefly provide some more
discussion also on GPU usage.

!"

#"

$!"

$#"

%!"

%#"

%" &" $!" %" &" $!" %" &" $!" %" &" $!" %" &" $!" %" &" $!" %" %"

$'()*+," %'()*+," $'()*+," %'()*+," $'()*+," %'()*+," $'("%'("

-./012" 3345" 3346" -./012"

73
8
"

9:20,"

Depth information compression; 1280x1024

!"#$% &'(%)*%

&'(%+",-% &'(%./0112$%

Figure 13: Image throughput performance comparison of
different depth-component compression methods.

5.3.2. Color component compression
To determine the best color compression we have fixed depth
compression to RLE. As observed before, the images gener-
ated from sort-last rendering are likely to have large empty
regions with increasing N. When using direct-send com-
positing [SML∗03, EP07], each node renders a part of the
3D data into a full-sized frame buffer, followed by depth-
compositing of a part of the entire viewport. The compos-
ited sub-regions are eventually sent to the destination node
for final assembly.

Figure 14(a) shows that simple RLE compression is effec-
tive for color if increasingly larger parts of the partially ren-
dered images are empty. YUV subsampling has much less
effect for such sparse image data. Almost identical results

c� The Eurographics Association 2010.

Makhinya & Eilemann & Pajarola / Fast Compositing

!"

#"

$!"

$#"

%!"

%#"

%" &" '" (" $!"

)*
+
"

,-./0"

1234."5/2.6"$%(!7$!%&6"%894:;06"1<"0/=42>"

!"#$%

&'(%

&'(%)"*+%

&'(%,-.//0$%

123%&'(%

123%&'(%)"*+%

123%&'(%,-.//0$%

(a)

!"

#"

$!"

$#"

%!"

%#"

%" &" '" (" $!"

)*
+
"

,-./0"

1234."5/2.6"$%(!7$!%&6"%894:;06"1<".4=/>:?0/@."

!"#$%

&'(%

&'(%)"*+%

&'(%,-.//0$%

123%&'(%

123%&'(%)"*+%

123%&'(%,-.//0$%

(b)

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

$" %" &" '" #" (")" *" +" $!"

,-
.
"

/0123"

45671"$889"$%*!:$!%'9"%;<7=>3"

!"#$%&'

()'*$#+$&"#,'-#./'

()'

)0'*$#+$&"#,'-#./'

)0'1$&"%.'

)0')"&2341#+'

*-5')0'1$&"%.'

(c)

Figure 14: Image throughput comparison of different color compression methods for (a) serial and (b) direct-send sort-last
compositing. (c) ROI selection impact on sort-first (2D) as well as sort-last (DB) serial and direct-send compositing modes.

!"

#"

$!"

$#"

%!"

%#"

&!"

%" '" (")" $!"

*+
,
"

-./01"

2345/"603/7"%895:;17"$%)!<$!%'"

!"#$

!%&$'$!"#$()*+$

,-.$!"#$

!%&$'$,-.$!"#$()*+$

(a)

!"

#"

$!"

$#"

%!"

%#"

&!"

%" '" (")" $!"

*+
,
"

-./01"

++234"%5678914"$%)!:$!%'"

!"#$

!%&$'$!"#$()*+$

,-.$!"#$

!%&$'$,-.$!"#$()*+$

(b)

!"

#"

$!"

$#"

%!"

%#"

&!"

%" '" (")" $!"

*+
,
"

-./01"

++234"%5678914"$%)!:$!%'"

!"#$

!%&$'$!"#$()*+$

,-.$!"#$

!%&$'$,-.$!"#$()*+$

(c)

Figure 15: Effect of our ROI method on image throughput. (a) David Head, (b) Power Plant (fly around) and (c) Power Plant
(fly through) model.

were found for rendering the Power Plant model, but are
omitted here due to space.

In contrast to serial compositing, direct-send exhibits a
constant amount of image data that has to be transmitted be-
tween the parallel rendering nodes, which is also evidenced
in Figure 14(b). Due to the split-frame compositing and dif-
ferent distribution of rendering and pixel data, YUV subsam-
pling can notably improve image throughput here.

The results suggest that for a small number of nodes, de-
pending on the network bandwidth, serial compositing per-
forms better than direct-send. Direct-send will be beneficial
for a larger number of rendering nodes and large complex
3D data sets.

5.3.3. ROI compression
So far we can conclude that for sort-last rendering the ef-
ficient encoding of the sparse image data is important, i.e.
removal of blank pixel data. Furthermore, the experiments
on sort-first rendering have shown that for large non-uniform
color regions YUV subsampling and optionally swizzle RLE
coding achieve significant improvements in image through-
put. In the following we test the influence of our ROI selec-
tion algorithm. Serial compositing up to 5 nodes and after-
wards direct-send compositing is used as a reference point,
when ROI is executed in serial fashion only. RLE compres-

sion used for simple tests, and RLE per-component for ROI
tests (since blank areas are already excluded).

Figure 15 shows that our ROI algorithm clearly outper-
forms RLE for empty pixel removal. Despite the additional
cost to detect ROIs (from 0.79ms to 2.5ms for 1280×1024)
and splitting an image into multiple regions, our ROI se-
lection algorithm quickly and effectively identifies and re-
moves blank frame buffer areas. In combination with YUV
subsampling further significant speedups can be achieved.
The decrease of frame rates is due to the fundamental image
throughput limits outlined at earlier.

5.3.4. ROI scalability
Without optimization of the image throughput, scalability
is quickly limited due to the distributed image compositing
stage, i.e. network transmission as reported e.g. in [EMP09].
Below we demonstrate the positive impact of ROI selection
on the compositing stage. Experiments are conducted with
the large David 1mm model displayed horizontally. For sort-
first rendering the screen was divided into N equal vertical
tiles, for sort-last the data is split into N equal chunks.

In Figure 14(c) the theoretically possible performance is
indicated with Rendering only for sort-first (2D) and sort-last
rendering (DB), without accounting for any image transmis-
sion and compositing. The actually achieved frame rates of

c� The Eurographics Association 2010.

Makhinya & Eilemann & Pajarola / Fast Compositing

Figure 16: Screen shots along the Power Plant fly-through path.

sort-last rendering are shown for serial and direct-send com-
positing. Superlinear performance of rendering can be ex-
plained by caching effects in main memory and GPU. The
negative performance impact of the limited image through-
put is obvious as the speedup quickly approaches the ex-
pected frame rates and flattens out. In contrast, the ROI en-
hanced sort-last rendering keeps up scalability much longer
and performs superlinearly up to the maximum number of
nodes tested.

While sort-first rendering in general shows less impact
due to image throughput limits than sort-last methods for
large complex 3D data, ROI enhanced sort-last rendering
nevertheless outperforms it considerably.

5.4. View Examples
In Figure 17 we show the typical configuration for rendering
the David Head model fully covering the frame buffer. Sort-
last decomposition of the data is indicated by color coding
and sort-first decomposition by the vertical tiles (actual col-
ors of David Head model, used in the testing, are not shown).
Also we demonstrate the YUV chroma subsampling in the
lower half of the image, exhibiting visual artifacts at discon-
tinuous color boundaries but only if the image is magnified
significantly. Additionally the fly-through path for the Power
Plant model is indicated with example screen shots along
that path given in Figure 16.

6. Conclusions and Future Work
The analysis and experiments presented in this paper high-
light the impact of the image throughput on the distributed
compositing stage of cluster-parallel rendering systems. We
furthermore demonstrate the potential improvements using
image compression and ROI selection techniques, for which
we introduce novel and fast algorithms.

Sort-first parallel rendering is fundamentally limited by
a very strict network bandwidth constraint that can only be
alleviated using frame buffer data reduction which can be
carried out at very high frame rates on any input image. For
sort-last rendering approaches, the image throughput is also

6 x Zoom
YUV subsampled

RGB regular

Figure 17: Typical view of the Power Plant fly-through path
and the full-screen David Head model.

a critical and limiting performance factor independent of the
compositing strategy. It has been shown that the typically
occurring blank frame buffer areas can better be removed
with a clever ROI algorithm than simple RLE for empty-
pixel skipping.

As GPU based image compression algorithms become
more widely available it will be interesting to incorporate
and analyze these in the future. The integration will be more
complex as it requires a tighter integration with the parallel
rendering framework. The compositing stage will be less or-
thogonal to the parallelized draw stage as GPU, frame buffer
and OpenGL contexts must be shared and accessed directly.
Additionally, while CPU image compression can run concur-
rently to rendering on the GPU, GPU based image compres-
sion will steal GPU resources away from rendering which

c� The Eurographics Association 2010.

Makhinya & Eilemann & Pajarola / Fast Compositing

could result in slower overall frame rates.

Acknowledgments
This work was supported in part by the Swiss National Sci-
ence Foundation under Grant 200021-116329/1. The authors
would like to thank and acknowledge the following institu-
tions and projects for providing 3D test data sets: the Digital
Michelangelo Project, Stanford 3D Scanning Repository and
the UNC Walkthru Project.

References
[AP98] AHRENS J., PAINTER J.: Efficient sort-last rendering

using compression-based image compositing. In Proceedings
Eurographics Workshop on Parallel Graphics and Visualization
(1998). 2

[BBFZ00] BLANKE W., BAJAJ C., FUSSEL D., ZHANG X.: The
Metabuffer: A Scalable Multi-Resolution 3-D Graphics System
Using Commodity Rendering Engines. Tech. Rep. TR2000-16,
University of Texas at Austin, 2000. 1

[BJH∗01] BIERBAUM A., JUST C., HARTLING P., MEINERT K.,
BAKER A., CRUZ-NEIRA C.: VR Juggler: A virtual platform for
virtual reality application development. In Proceedings of IEEE
Virtual Reality (2001), pp. 89–96. 2

[BRE05] BHANIRAMKA P., ROBERT P. C. D., EILEMANN S.:
OpenGL Multipipe SDK: A toolkit for scalable parallel render-
ing. In Proceedings IEEE Visualization (2005), pp. 119–126. 2

[EMP09] EILEMANN S., MAKHINYA M., PAJAROLA R.: Equal-
izer: A scalable parallel rendering framework. IEEE Transactions
on Visualization and Computer Graphics (May/June 2009). 2, 8

[EP07] EILEMANN S., PAJAROLA R.: Direct send compositing
for parallel sort-last rendering. In Proceedings Eurographics
Symposium on Parallel Graphics and Visualization (2007). 2,
7

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R., FRANK R.,
AHERN S., KIRCHNER P. D., KLOSOWSKI J. T.: Chromium: A
stream-processing framework for interactive rendering on clus-
ters. ACM Transactions on Graphics 21, 3 (2002), 693–702. 2

[LMS∗01] LOMBEYDA S., MOLL L., SHAND M., BREEN D.,
HEIRICH A.: Scalable interactive volume rendering using off-
the-shelf components. In Proceedings IEEE Symposium on
Parallel and Large Data Visualization and Graphics (2001),
pp. 115–121. 1

[LRN96] LEE T.-Y., RAGHAVENDRA C., NICHOLAS J. B.: Im-
age composition schemes for sort-last polygon rendering on 2D
mesh multicomputers. IEEE Transactions on Visualization and
Computer Graphics 2, 3 (July-September 1996), 202–217. 2

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. IEEE Computer
Graphics and Applications 14, 4 (1994), 23–32. 1

[MEP92] MOLNAR S., EYLES J., POULTON J.: PixelFlow: High-
speed rendering using image composition. In Proceedings ACM
SIGGRAPH (1992), pp. 231–240. 1

[MHS99] MOLL L., HEIRICH A., SHAND M.: Sepia: scalable
3D compositing using PCI pamette. In Proceedings IEEE Sym-
posium on Field-Programmable Custom Computing Machines
(1999), pp. 146–155. 1

[MOM∗01] MURAKI S., OGATA M., MA K.-L., KOSHIZUKA
K., KAJIHARA K., LIU X., NAGANO Y., SHIMOKAWA K.:
Next-generation visual supercomputing using PC clusters with

volume graphics hardware devices. In Proceedings ACM/IEEE
Conference on Supercomputing (2001), pp. 51–51. 1

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH
M. F.: Parallel volume rendering using binary-swap image com-
position. IEEE Computer Graphics and Applications 14, 4 (July
1994), 59–68. 2

[PGR∗09] PETERKA T., GOODELL D., ROSS R., SHEN H.-
W., THAKUR R.: A configurable algorithm for parallel image-
compositing applications. In Proceedings ACM/IEEE Confer-
ence on High Performance Networking and Computing (2009),
pp. 1–10. 2

[PMD∗07] PUGMIRE D., MONROE L., DAVENPORT C. C.,
DUBOIS A., DUBOIS D., POOLE S.: NPU-based image com-
positing in a distributed visualization system. IEEE Transac-
tions on Visualization and Computer Graphics 13, 4 (July/August
2007), 798–809. 1

[SEP∗01] STOLL G., ELDRIDGE M., PATTERSON D., WEBB A.,
BERMAN S., LEVY R., CAYWOOD C., TAVEIRA M., HUNT S.,
HANRAHAN P.: Lightning-2: A high-performance display sub-
system for PC clusters. In Proceedings ACM SIGGRAPH (2001),
pp. 141–148. 1

[SKN04] SANO K., KOBAYASHI Y., NAKAMURA T.: Differen-
tial coding scheme for efficient parallel image composition on a
pc cluster system. Parallel Computing 30, 2 (2004), 285–299. 2

[SML∗03] STOMPEL A., MA K.-L., LUM E. B., AHRENS J.,
PATCHETT J.: SLIC: Scheduled linear image compositing for
parallel volume rendering. In Proceedings IEEE Symposium
on Parallel and Large-Data Visualization and Graphics (2003),
pp. 33–40. 2, 7

[TIH03] TAKEUCHI A., INO F., HAGIHARA K.: An improved
binary-swap compositing for sort-last parallel rendering on dis-
tributed memory multiprocessors. Parallel Computing 29, 11-12
(2003), 1745–1762. 2

[YWM08] YU H., WANG C., MA K.-L.: Massively parallel vol-
ume rendering using 2-3 swap image compositing. In Proceed-
ings IEEE/ACM Supercomputing (2008). 2

[YYC01] YANG D.-L., YU J.-C., CHUNG Y.-C.: Efficient com-
positing methods for the sort-last-sparse parallel volume render-
ing system on distributed memory multicomputers. Journal of
Supercomputing 18, 2 (February 2001), 201–22–. 2

Appendix A
While LZO is considered to be a very fast general com-
pression technique, Figure 18 demonstrates that it performs
worse than swizzle RLE when applied in real time rendering.

!"#

$%#

$"#

&%#

&"#

'%#

'"#

"%#

$# &# '# "# (#)# *# +# !%#

,
-
.
#

/0123#

45671#82519#!$*%:!%$'9#.0;<=,7;3<#

!"#$%&'(()*+$,$-.'/01$!"#$%&'(()*+$2$-.'/01$

"34+$,$-.'/01$ "34+2-.'/01$

Figure 18: Comparison between LZO and swizzle RLE com-
pression for sort-first rendering of the David Head model.

c� The Eurographics Association 2010.

